Reactivity of Distorted Tetrahedral Copper(II) Complex toward O_2 and H_2O

(*Graduate School of Engineering, Osaka University*) oLan Yang, Tomoya Shinke, Yuma Morimoto, Hideki Sugimoto, Shinobu Itoh

Keywords: Tetrahedral Copper(II) Complex, Water Oxidation, Molecular Oxygen Activation, Reaction Mechanism

Peptidylglycine α -hydroxylating monooxygenase (PHM) performs stereospecific hydroxylation of C–H bonds at a single copper center Cu_M, where a mononuclear tetrahedral Cu/O₂ intermediate is involved as a reactive intermediate.¹ However, little is known about the dioxygen activation mechanism on such a tetrahedral copper rection center. Recently, we have developed a series of copper(II) complexes supported by a tridentate N₃ ligand (TMG₃tach), which induces a tetrahedral geometry with a labile coordination site.²

In this study, the reactivity of $(TMG_3tach)Cu^{II}Br$ was examined to find that the ligand hydroxylation took place when the complex was treated with O₂ at 70 °C in acetonitrile. Furthermore, we have found that $(TMG_3tach)Cu^{II}Br$ was reduced by H₂O to form the Cu(I) complex. In order to get information about the mechanisms of these reactions, we have examined the intrinsic reactivity of a series of $(TMG_3tach)Cu^{II}X$ (X = F, Cl, Br, and I) to find that homolytic cleavage of the Cu^{II}–X bond easily occurred to form Cu^I and X• as the key reactive intermediates (Figure 1). Oxidation ability of external substrates such as phenol derivatives by $(TMG_3tach)Cu^{II}X$ was also examined.

Fig 1. Homolytic cleavage of Cu^{II}–X bond to form Cu^I and X•

- 1) J. P. Klinman, Chem. Rev. 1996, 96(7), 2541–2562.
- 2) S. Itoh, et al., Inorg. Chem., 2017, 56, 9634–9645.