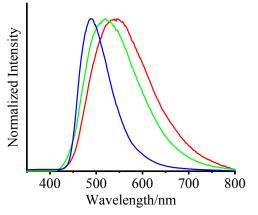
Synthesis and Luminescence Properties of Silver(I) Halogenido Coordination Polymers Bridged by Pyrazine, Methylpyrazine, and Aminopyrazine

(Graduate School of Science and Engineering, University of Toyama), Taiki Kuwahara, Hideki Ohtsu, ○Kiyoshi Tsuge


Keywords: Silver; Luminescence; Charge-transfer Transition; $\pi - \pi^*$ Transition

Though luminescent Ag^I complexes have been prepared using various ligands, their number is still less than that of relating Cu^I complexes and characters of their emissive excited states (ESs) have not been well documented because of energetic competition between several possible emissive ESs. Here, aiming at the Ag^I complexes showing charge-transfer (CT) type emission, we utilized pyrazine (pyz), methylpyrazine (Mepyz) and aminopyrazine (ampyz) bearing a low-lying π^* orbital to obtain Ag^I complexes with the formula of [Ag₂X₂(PPh₃)₂(µ-L)]_n (AgX-L: X = I, Br; L = pyz, Mepyz, ampyz).¹

AgX-L were prepared as colorless single crystals by the reaction of AgX, PPh₃, and excess amount of L in a mixed-solvent of CH₃CN and DMF. X-ray crystal structure analysis showed that the complexes are composed of $\{Ag_2X_2(PPh_3)_2\}$ units connected by L. All the complexes were strongly emissive at room temperature (Φ : 0.4 – 0.7) with the λ_{max} at around 500 nm (Table 1 and Figure 1). The blue-shift of the emission bands of AgX-Mepyz compared to those of AgX-pyz and their µs-order lifetimes imply that their emissive

ESs are charge-transfer (CT) transitions from the {Ag₂X₂} core to a π^* orbital of L. On the other hand, the ms-order lifetimes of AgXampyz indicated that their emissive ESs were not similar CT transitions although the blue-shift of their emission bands compared to those of AgX-pyz and AgX-Mepyz were expected one for CT type transitions. Because the emissive ESs of AgX-bpy (X = I, Br, Cl; bpy: 4,4'-bipyridine) have also been ascribed to the $\pi - \pi^*$ transition in bpy,²⁾ those of AgX**ampyz** were similarly ascribed to the $\pi - \pi^*$ transition in ampyz. Due to the destabilization of the π^* orbital of the pyz ring by the amino group, the CT ES of AgX-ampyz was raised, which resulted in switching the lowest ES from CT to $\pi - \pi^*$ one.

1) T. Kuwahara, *et al. Inorg. Chem. in print.* 2) M. Dosen, *et al. Inorg. Chem.* **2019**, *58*, 8419.

Figure 1. Emission spectra of **AgI-L** (L = pyz: red, L = Mepyz, green, L = ampyz; blue).

Table 1.	Photophysical	properties	of AgX-L

	1 2			0
	X = I		X = Br	
L	λ_{max}/nm	τ/μs	λ_{max}/nm	τ/μs
pyz	530	1.5	530	3.9
Mepyz	515	1.4	515	4.5
ampyz	490	1.0×10 ³	490	5.4×10 ³