
Creation of Coordination Polyhedra by Collaborative Metal– Acetylene π-coordination

(¹*Graduate School of Engineering, The University of Tokyo,* ²*Institute for Molecular Science*) \bigcirc Yuya Domoto, ¹ Masahiro Abe, ¹ Kidai Yamamoto, ¹ Makoto Fujita^{1,2} **Keywords**: Self-Assembly; π -coordination; Acetylenes; Silver Complexes; Molecular Cages

Acetylene π -coordination is a well-known weak interaction working in diverse organometallic transformations, while it has seldom been applied to metal-directed self-assembly in contrast to other coordination bonds such as relatively strong pyridyl or carboxylate coordination. We have recently elucidated that the self-assembly of propeller-shaped ligand 1 (L, R = H) and metal ions (M = Cu^I, Ag^I) afforded highly-entangled coordination polyhedra (M₃L₂)_n (2-4; n = 2,4,6), based on a key role of the acetylene spacers in 1 as weak secondary coordination sites upon metal binding at the primary pyridyl sites.^[1,2] Furthermore, the larger (M₃L₂)₈ (5) with a truncated cubic framework was also selectively constructed by post-assembly counter-anion exchange (BF₄ to NO₃) of (M₃L₂)₂ cage 2. Flexible nature of acetylene π -coordination with weak directionality would realize the formation of a series of cage structures with high structural complexity, which emerge as a promising strategy for the construction of new classes of nanostructures.

We will also present (i) construction of hybridized cage frameworks ($M_{13}L_8$ (6) and $M_{21}L_{12}$ (7)) by additional metal insertion to $(M_3L_2)_n$ polyhedra, and (ii) helicity control of the inherently chiral cage structures via accumulation of small chiral functional groups (R = (*S*)-2-alkoxy groups) on the frameworks, which also contain highly entangled substructures.

1) a) Y. Domoto, M. Abe, T. Kikuchi, M. Fujita, *Angew. Chem. Int. Ed.* **2020**, *59*, 3450. b) Y. Domoto, M. Abe, K. Yamamoto, T. Kikuchi, M. Fujita, *Chem. Sci.* **2020**, *11*, 10457.