
A Sandwich-Shaped Hexanuclear Silver Complex Constructed from a Macrocycle with Six Inward Chelating Units

(¹Faculty of Pure and Applied Sciences, University of Tsukuba, ²Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba) OTakashi Nakamura, ^{1,2} Rui Yun Feng, ¹Tatsuya Nabeshima^{1,2}

Keywords: Macrocyclic Ligands; Macrocycles; Schiff Bases; Silver; Supramolecular Chemistry

The coordination linking of multiple macrocycles is a useful strategy to provide a large and well-defined inner space that cannot be created only by its macrocyclic component. We have reported hexapap, macrocyclic hexamer of pap recently а (2-[(pyridin-2vlmethvlene)amino]phenol).^{1,2)} In the previous studies, pap acted as a negatively-charged NNO tridentate metal-chelating ligand to zinc¹⁾ or palladium²⁾ upon deprotonation of the phenolic proton. Here, we would like to report the formation of a hexanuclear silver complex $[1_2Ag_6L_n]^{m+}$ (L: solvent or anion) formed from the hexapap 1 and Ag⁺ ion (Figure).³⁾ Six silver ions are sandwiched by two molecules of a macrocyclic ligand possessing six pap chelating units, and the metals are arranged on the wall of the internal cavity. Various analytical techniques revealed that the 2:1 complexation between pap as an NN bidentate unit and Ag⁺ ion effectively generated the sandwich-shaped structure with a giant cavity.

Figure. Sandwich-shaped hexanuclear silver complex $[\mathbf{1}_2Ag_6L_n]^{m^+}$ (L: solvent or anion) formed from hexapap 1 and Ag^+ ion.

References

- 1) T. Nakamura, Y. Kaneko, E. Nishibori, T. Nabeshima, Nat. Commun. 2017, 8, 129.
- 2) A. Nagai, T. Nakamura, T. Nabeshima, Chem. Commun. 2019, 55, 2421.
- 3) T. Nakamura, R. Y. Feng, T. Nabeshima, Eur. J. Inorg. Chem. DOI: 10.1002/ejic.202000882.