A15-3pm-07

Reaction of H₂ with mitochondria-relevant metabolites using a single-metal-site (PNNP)iridium complex

(¹*Graduate School of Science*, ²*Research Center for Material Science, Nagoya University*) OShota Yoshioka,¹ Sota Nimura,¹ Masayuki Naruto,¹ Susumu Saito^{1,2} **Keywords**: Polycarboxylic acids; Polyols; Hydrogenation; (PNNP)Iridium complex; Krebs

cycle

The Krebs cycle occurs in mitochondrial matrix in cells to produce and transfer electrons to generate energy-rich NADH, GTP and FADH₂, and conversely to produce not only C₄-dicarboxylic acids (succinic acid (SucA), fumaric acid (FumA), malic acid (MliA), oxaloacetic acid (OacA)), but also C₅- (2-oxoglutaric acid (OglA)) and C₆-polycarboxylic acids (aconitic acid (AcoA) and citric acid (CitA)) as metabolites. Those polycarboxylic acids are in highly oxidized or oxygenated states and thus energy-poor molecules, which are potential candidates as bio-renewable carbon feedstock if hydrogen atoms and electrons could be back into these molecules (Figure 1).

We report herein that those C₄, C₅, and C₆ resources, in addition to mitochondria-relevant metabolites (aspartic acid (AspA), tartaric acid (TarA), itaconic acid (ItaA)), sugar-derived artificial feedstock (levulinic acid (LevA)), and petrochemical product (phthalic acid (PhtA)) are convergently reduced and dehydrated to corresponding diols or triols upon reaction with H₂ catalyzed by iridium (Ir) complex (**IrPCY2**, Figure 2) comprising sterically confined Ir-bipyridyl frameworks.¹

Figure 1. Summary of this work

Figure 2. IrPCY2

1) S. Yoshioka, S. Nimura, M. Naruto, S. Saito, Sci. Adv. 2020, 6, eabc0274.