π-Electronic Ion Pairs : Ordered Arrangement Based on Noncovalent Interactions

(College of Life Sciences, Ritsumeikan University) O Hiroki Tanaka, Yohei Haketa, Hiromitsu Maeda

Keywords: Ion-Pairing Assemblies; π -Electronic Systems; Porphyrin Ions; Noncovalent Interaction

 π -Electronic ion pairs are of interest for the fabrication of electronic materials with potential ferroelectric and electric conductive properties. Because of their appropriate sizes, geometries, and electronic states, π -electronic ions can achieve ordered ion-pair arrangements as dimensioncontrolled assemblies, including supramolecular gels and liquid crystals.¹⁾ Despite numerous studies on assembling modes, the interactions between π -electronic This study ions are not well understood. focuses on the characteristic interactions operative in ion-pairing assemblies comprising porphyrin ions, which delocalize the charge in the core units. π -Electronic anions produced upon deprotonation of meso-hydroxy-substituted porphyrins $(MHPs)^{2}$ can form various π -electronic ion pairs in combination with π -electronic

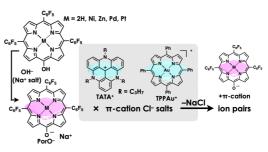


Fig. 1 Method for preparing π -electronic ion pairs.

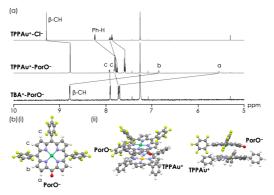


Fig. 2 (a) ¹H NMR spectra of TPPAu⁺-Cl⁻, TPPAu⁺-PorO⁻, and TBA⁺-PorO⁻ in CDCl₃ (1.0×10^{-3} M) and (b) optimized structures of (i) PorO⁻ and (ii) TPPAu⁺-PorO⁻.

cations such as porphyrin–Au^{III} complexes³⁾ and triazatriangulenium cations (TATA⁺). π -Electronic ion pairs were formed by mixing Na⁺ salts of porphyrin anions, prepared from the CH₂Cl₂ solutions of MHPs with aqueous NaOH, and 1 equiv of chloride salts of desired countercations, followed by the removal of NaCl by washing with water (Fig. 1). The π -electronic ion pairs exhibited characteristic ¹H NMR signal shifts due to ion-pairing stacking in solution (Fig. 2). Furthermore, the energy decomposed analysis of single-crystal packing structures revealed that electrostatic and dispersion interactions were important for stabilizing the stacking π -electronic ions.

1) A recent review: Haketa, Y. et al., *Mol. Syst. Des. Eng.* **2020**, *5*, 757. 2) (a) Sasano, Y. et al., *Dalton Trans.* **2017**, *46*, 8924; (b) Sasano, Y. et al., *Chem. Eur. J.* **2019**, *25*, 6712. 3) (a) Haketa, Y. et al., *iScience* **2019**, *14*, 241; (b) Tanaka, H. et al., *Chem. Asian J.* **2019**, *14*, 2129.