
## Synthesis of Novel Peripherally Fused Corannulenes via Quintuple Amination Reactions and Their Structural and Electronic Perturbations

(Graduate School of Science, Kyoto University) OKoki Kise, Shota Ooi, Takayuki Tanaka, Atsuhiro Osuka

**Keywords**: Heteronanographene; Heterohelicene; Amination; Solid-state fluorescence; Association behavior with fullerene

Structural and electronic properties of polycyclic aromatic hydrocarbons (PAHs) can be controlled by incorporation of heteroatoms at the periphery of the PAHs. Especially, corannulene, that is a fragment of fullerene, is an attractive research target due to its bowl-shaped structure and electron-deficient nature. Recent reports on nitrogen-embedded corannulenes have been attracting great attention due to the unique stereochemistry and effective electronic perturbation.1 In this work, we first prepared sym-pentabromocorannulene **1\_Br** and sym-pentaiodocorannulene **1\_I** as promising palladium-catalyzed amination reaction. Then, we synthesized substrates for pentaaminocorannulenes **3a**,**b** in which five nitrogen atoms are peripherally incorporated. Subsequently, synthesized pentaindolocorannulene 4a we and pentakis(benzoindolo)corannulene 4b via intramolecular cyclization reactions under palladium catalysis, and subsequent N-methylation reaction afforded **5a,b** which possess azahelicene scaffolds.<sup>2</sup> Owing to the electron-rich nature, quintuple fused aminocorannulenes 5a,b showed multi-step oxidations by cyclic voltammetry and larger association constants with fullerene C<sub>60</sub> compared with previously reported corranulene-based PAHs.3



a) Y. Tokimaru, S. Ito, K. Nozaki, *Angew. Chem. Int. Ed.* 2017, *56*, 15560. b) Y. Wang, O. Allemann, T. S. Balaban, N. Vanthuyne, A. Linden, K. K. Baldridge, J. S. Siegel, *Angew. Chem. Int. Ed.* 2018, *57*, 6470. 2) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, *Nat. Chem.* 2013, *5*, 739. 3) a) Y.-Yan Xu, H.-R. Tian, S.-H. Li, Z.-C. Chen, Y.-R. Yao, S.-S. Wang, X. Zhang, Z.-Z. Zhu, S.-L. Deng, Q. Zhang, S. Yang, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, *Nat. Commun.* 2019, *10*, 485. b) A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau, M. M. Olmstead, *J. Am. Chem. Soc.* 2007, *129*, 3842.