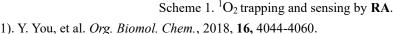

Rhodamine 6G-anthracene conjugate for dual photo-triggered sensing of singlet oxygen


(¹Graduate School of Environment Science, ²Research Institute for Electronic Science, Hokkaido University) ○ Hanjun Zhao¹, Devika Sasikumar, Yuta Takano^{1,2}, Biju Vasudevanpillai^{1,2}

Key words: Singlet Oxygen; Fluorescence Sensor; Donor-accepter Molecule; Electron Transfer

Singlet oxygen (${}^{1}O_{2}$) is the excited state of molecular oxygen, which attract great attention to photochemical environmental remediation, and photodynamic therapy. To precisely understand and control the chemical and biological reactions of ${}^{1}O_{2}$, it is essential to detect the generation of ${}^{1}O_{2}$ temporally and spatially. Fluorescence sensing is one of the most promising methods to detect ${}^{1}O_{2}$.¹ Although there are serval molecular sensors of ${}^{1}O_{2}$, a coumarinanthracene based molecular dyad developed in our laboratory demonstrates the ability to trap, store, and release ${}^{1}O_{2}$ under a specific wavelength and intensity of light. This kind of lightcontrol of ${}^{1}O_{2}$ is beneficial in chemistry, and cell biology. In this work, I reveal the ability of the rhodamine 6G-anthracene conjugate (**RA**) to capture ${}^{1}O_{2}$ and show photo-triggered fluorescence. **RA** is synthesized into a purple powder and characterized by spectroscopic methods.

The ${}^{1}O_{2}$ sensing ability of **RA** is studied using fluorescence and absorption spectroscopic techniques. As a representative result, upon continuous photoirradiation of a photosensitizer **rTPA** at 700 nm (20 mW cm⁻²) in the presence of **RA** in an aqueous solution, the fluorescence intensity of **RA** remarkably increases due to ${}^{1}O_{2}$ sensing. **RA** shows 9-fold enhancement in the fluorescence intensity after the 60 min sensitization, which indicates an effective ${}^{1}O_{2}$ sensing by **RA**. After illumination with feeble UV light, the fluorescence intensity further increases rapidly. This photo-triggered increase in the fluorescence intensity suggests that **RA** is capable of capturing and releasing ${}^{1}O_{2}$ (Scheme 1), similarly to a reported coumarin-anthracene conjugate. This feature enables **RA** to control ${}^{1}O_{2}$ release and detection spatiotemporally. Therefore, **RA** can be a promising molecular tool to understand and use ${}^{1}O_{2}$ in the various reactions.

