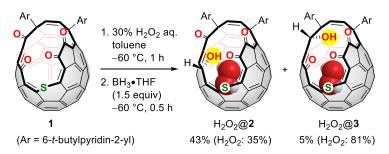
## Synthesis of Open-Cage Fullerene C<sub>60</sub> Derivatives Encapsulating a Hydrogen Peroxide Molecule


(Institute for Chemical Research, Kyoto University) OGuanglin Huang, Shota Hasegawa, Yuki Ide, Yoshifumi Hashikawa, Takashi Hirose, Yasujiro Murata

**Keywords:** Open-cage fullerene derivative; Endohedral fullerene; Hydrogen peroxide; Reduction; Intramolecular interaction

The use of the cavity in fullerene  $C_{60}$  enables the isolation of a single H<sub>2</sub>O molecule which can modulate the properties of the outer sphere by intramolecular interactions with the  $C_{60}$ cage.<sup>1</sup> To establish the stronger interaction between the cage and entrapped species, we studied the encapsulation of an H<sub>2</sub>O<sub>2</sub> molecule<sup>2</sup> which is larger than the H<sub>2</sub>O molecule.

As a host molecule, we used 1 which allows an  $H_2O$  molecule to be spontaneously encapsulated.<sup>3</sup> By subjecting a 30%  $H_2O_2$  aq. to a toluene solution of 1, followed by the reduction using BH<sub>3</sub>•THF at -60 °C,<sup>4</sup> hydroxylated derivatives 2 and 3 with an

Scheme 1. Synthesis of H<sub>2</sub>O<sub>2</sub>@2 and H<sub>2</sub>O<sub>2</sub>@3



OH group at the different positions were obtained in 43 and 5% isolated yields, respectively (Scheme 1). The <sup>1</sup>H NMR spectra (500 MHz, CDCl<sub>3</sub>) showed a signal corresponding to an encapsulated H<sub>2</sub>O<sub>2</sub> molecule at -4.16 ppm for H<sub>2</sub>O<sub>2</sub>@**2** and -3.81 ppm for H<sub>2</sub>O<sub>2</sub>@**3**. We confirmed that the H<sub>2</sub>O<sub>2</sub> molecule in **2** escaped with the decreased encapsulation ratio after 6 days at room temperature, while that in **3** did not. These results showed that the position of the OH group affects effective size of the openings and that **3** offers stronger kinetic stabilization for the H<sub>2</sub>O<sub>2</sub> against release. The crystallographic analysis showed that the distance of O(OH)•••O(H<sub>2</sub>O<sub>2</sub>) in H<sub>2</sub>O<sub>2</sub>@**3** (2.939(5) Å) is obviously shorter than that of H<sub>2</sub>O<sub>2</sub>@**2** (3.54(2) Å), implying the stronger hydrogen-bonding interaction in the former.

- Maroto, E. E.; Mateos, J.; Garcia-Borràs, M.; Osunna, S.; Filippone, S.; Herranz, M. A.; Murata, Y.; Solà, M.; Martín, N. J. Am. Chem. Soc. 2015, 137, 1190–1197.
- 2) Li, Y.; Lou, N.; Xu, D.; Pan, C.; Lu, X.; Gan, L. Angew. Chem., Int. Ed. 2018, 57, 14144–14148.
- 3) Futagoishi, T.; Murata, M.; Wakamiya, A.; Sasamori, T.; Murata, Y. Org. Lett. 2013, 15, 2750–2753.
- a) Hashikawa, Y.; Hasegawa, S.; Murata, Y. Chem. Commun. 2018, 54, 13686–13689. b) Hashikawa,
  Y.; Hasegawa, S.; Murata, Y. Angew. Chem., Int. Ed. 2021, 59, DOI: 10.1002/anie. 202012538.