Theoretical study on isotope fractionation in multistep biotic uranium reduction reaction

(Graduate School of Science, Tokyo Metropolitan University) OAtaru Sato, Minori Abe, Masahiko Hada

Keywords: Ab-initio calculation; Uranium; Isotope fractionation; Multistep non-equilibrium reaction; Biotic reduction

Metabolically varied microorganisms can reduce the hexavalent uranium (U(VI)) to the tetravalent uranium (U(IV)). During this biotic reduction, the heavier isotope (²³⁸U) is enriched in U(IV) and the apparent isotope fractionation coefficient Δ was obtained as 0.85– 0.88‰.¹ However, its mechanism has not been well uncovered. By introducing the steady-state model for multistep reaction,² we could derive the representation of Δ as below.

$$\Delta = \left(\varepsilon_{ab} + \alpha_{ba}\tilde{X}_{b}\right) + \left(\varepsilon_{bc} + \alpha_{cb}\tilde{X}_{c}\right)X_{b} + \left(\varepsilon_{cd} + \alpha_{dc}\tilde{X}_{d}\right)X_{b}X_{c} + \left(\varepsilon_{de} + \alpha_{ed}\tilde{X}_{e}\right)X_{b}X_{c}X_{d} + \left(\varepsilon_{ef} + \alpha_{fe}\tilde{X}_{f}\right)X_{b}X_{c}X_{d}X_{e} + \left(\varepsilon_{fg} + \alpha_{gf}\tilde{X}_{g}\right)X_{b}X_{c}X_{d}X_{e}X_{f} + \alpha_{gh}X_{b}X_{c}X_{d}X_{e}X_{f}X_{g}$$
(1)

Here, ε and α are the equilibrium and kinetic isotope fractionation coefficients for each reaction step, respectively. X is the flux ratio and \tilde{X} is defined as 1–X. The reaction is in equilibrium when X is 1, and it is irreversible when X is 0. In this study, we calculated ε for each reaction step in the biotic uranium reduction pathway³ (Fig. 1). Because the nuclear volume term, the dominant term of ε in uranium,⁴ is highly affected by relativity, we used *ab-initio* methods based on the relativistic quantum chemical theory.⁵

Because ε_{bc} is larger than the experimental Δ value¹ (Fig. 1), the contribution of the second term in Eq. 1 must be decreased. Thus, either X_b is smaller than one, \tilde{X}_c is non-zero with a negative α_{cb} , or both. These conditions mean that the binding of the substrate to an enzyme (A \rightarrow B) or the reduction of U(VI) to U(V) (B \rightarrow C) is not in equilibrium.

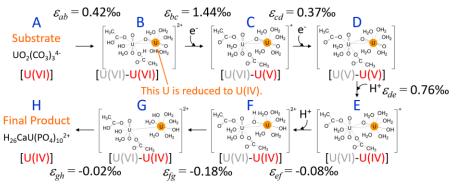


Fig. 1. Model of biotic uranium reduction pathway and obtained ε for each reaction step.
1) M. Stylo *et al. PNAS.* 2015, *112*, 5619. 2) C. E. Rees, *GCA*. 1973, *37*, 1141. 3) M. Sundararajan *et al. JPCA*. 2008, *112*, 4451. 4) J. Bigeleisen, *JACS*. 1996, *118*, 3676. 5) a) E. A. Schauble, *GCA*. 2007, *71*, 2170. b) M. Abe *et al. JCP*. 2008, *129*, 164309.