
Addition of C(sp³)–H Bonds to Styrenes via Hydrogen Atom Transfer to Aqueous Hydroxyl Radical under Photocatalysis

(¹*Grad. Sch. Sci., Nagoya Univ.*, ²*RCMS, Nagoya Univ.*) \bigcirc Shogo Mori,¹ Susumu Saito^{1,2} **Keywords**: Semiconductor photocatalyst, photoreaction, water oxidation, hydroxyl radical, hydrogen atom transfer

To date, the development of photocatalytic hydrogen atom transfer (HAT) methodologies has enabled the functionalization of hydridic to neutral $C(sp^3)$ –H bonds under mild conditions. In contrast, photocatalytic HAT strategies for relatively acidic $C(sp^3)$ –H bonds remain elusive. Recently, the HAT was demonstrated to occur from acidic $C(sp^3)$ –H bonds to aryl radicals (Ar^{*})¹ or *O*-centered carboxyl radicals (RCOO^{*})² generated under photocatalytic conditions, where these radicals were used as sacrificial agents.

Herein, we report addition reactions of the α -C–H bonds of acetonitrile and acetone to styrenes (olefin insertion to C–H bonds) at ambient temperature.³ The HAT from relatively acidic C(sp³)–H bonds was enabled by aqueous hydroxyl radicals generated eternally via the oxidation of water by silver-nanoparticle-loaded titania (Ag/TiO₂) under photocatalytic conditions without using any stoichiometric oxidation agents. This mild, environmentally friendly, and redox-neutral protocol accommodates the transformation of a wide variety of styrenes into the corresponding longer-chain nitriles and ketones in good to excellent yield with very high atom efficiency.

(1) (a) Anselmo, M.; Basso, A.; Protti, S.; Ravelli, D. ACS Catal. 2019, 9, 2493–2500. (b) Zhang,
J.-L.; Liu, Y.; Song, R.-J.; Jiang, G.-F.; Li, J.-H. Synlett 2014, 25, 1031–1035. (c) Kang, J.; Hwang, H.
S.; Soni, V. K.; Cho, E. J. Org. Lett. 2020, 22, 6112–6116.

(2) Fang, J.; Dong, W.-L.; Xu, G.-Q.; Xu, P.-F. Org. Lett. 2019, 21, 4480-4485.

(3) Mori, S.; Saito, S. manuscript submitted.