Electrosynthesis of glycine from oxalic acid using titanium dioxide electrocatalyst

(WPI-FCNER, Kyushu University) ○Takashi Fukushima, Miho Yamauchi

Keywords: Amino Acid; Titanium Dioxide; Electrosynthesis; Biomass

The reductive amination of α-keto acids is expected to be a futuristic synthetic process for amino acid production due to its simplicity and favorable product selectivity. Electrochemically driven amination of α-keto acids, which utilizes water and renewable electricity as hydrogen and energy sources, can realize environment-friendly synthesis of amino acids. Recently, we have reported that TiO$_2$ grown on Ti mesh electrode (TiO$_2$/Ti mesh) catalyzes the electrochemical conversion of α-keto acids into the corresponding amino acids in the presence of NH$_2$OH with remarkably high Faradaic efficiency, i.e., 77–99%. 1) In this study, we focus on oxalic acid, which is easily produced from agro-waste, as a starting material to generate a precursor of glycine, i.e., glyoxylic acid. 2) The electrochemical reaction starting from oxalic acid would realize one-step electrochemical synthesis of glycine (Fig. 1).

Electrochemical measurements such as cyclic voltammetry (CV) and chronoamperometry (CA) for the solution of oxalic acid and/or NH$_2$OH were performed using a single and a two-compartment electrochemical cell, respectively, equipped with Ag/AgCl electrode and Pt coil as reference and counter electrodes. We applied metal foils, calcined metal foils (450 °C, 1 h.), and TiO$_2$/Ti mesh as a working electrode. TiO$_2$/Ti mesh was prepared from Ti mesh through two-steps hydrothermal reaction as reported in ref. 3). TiO$_2$/Ti mesh with thin TiO$_2$ layer (thin-TiO$_2$/Ti mesh) was prepared by adjusting the reaction time. After CA experiments, catholyte was analyzed by 1H NMR to estimate Faradaic efficiencies (FEs) for production of glycine, glyoxylic acid oxime, and glycolic acid.

CV measurements revealed that calcined Ti foil exhibits higher catalytic activity for oxalic acid reduction than that for NH$_2$OH reduction (Fig. 2a). Therefore, we performed CA experiments using calcined Ti foil as working electrode. As a result, glycine and its intermediate, i.e., glyoxylic acid oxime were obtained with FEs of 28 and 28%, respectively (Fig. 2b). 4) Then, we newly prepared TiO$_2$/Ti mesh having thin TiO$_2$ layer on Ti surface similarly to calcined Ti foil (thin-TiO$_2$/Ti mesh) and applied it to the glycine synthesis. After the optimization of reaction conditions, we achieved high FEs of 59 and 14% for glycine and glyoxylic acid synthesis from oxalic acid.

Figure 1 Electrolysis of glycine from oxalic acid

Figure 2 (a) CV curves of calcined Ti foil and (b) products of the CA experiments