Near Infrared Photoluminescence Properties of Diarylethene-functionalized Single-walled Carbon Nanotubes

(¹Graduate School of Engineering, Kyushu University, ²WPI-I2CNER, Kyushu University, ³Division of Materials Science, Nara Institute of Science and Technology, ⁴Center for Molecular Systems, Kyushu University) OTomohiro Shiraki,^{1,2} Yasuto Nakagawa,¹ Takuya Nakashima,³ Tsuyoshi Kawai,³ Tsuyohiko Fujigaya^{1,2,4}

Keywords: Carbon Nanotube; Photoluminescence; Near Infrared Light; Chemical Modification; Diarylethene

Local chemical functionalization of single-walled carbon nanotubes (SWCNTs) allows sp³ carbon defect doping to the crystalline sp² carbon networks to enhance their near-infrared (NIR) photoluminescence (PL) properties.¹⁻³ The locally functionalized SWCNTs (lf-SWCNTs) show new red-shifted PL (E_{11} *) with enhanced quantum yields compared to the original PL (E_{11}). The E_{11} * PL wavelength of lf-SWCNTs have been found to be modulated by using functions of the functionalized molecules on their doped sites. For example, selective molecular binding based on molecular recognition⁴ and dynamic covalent bonding⁵ on the lf-SWCNTs have induced selective wavelength shifts of E_{11} * PL.

In this study, we synthesize lf-SWCNTs functionalized with diarylethene derivatives $(DAE)^6$ that show photochromism with high stability and sensitivity. For the synthesis of DAE-functionalized lf-SWCNTs (lf-SWCNTs-DAE), a diazonium salt having a DAE moiety was synthesized and reacted with the solubilized SWCNTs in D₂O. PL spectrum of the lf-SWCNTs-DAE shows peaks at 980 and 1142 nm (Figure 1). The former one is

assigned to E_{11} PL and the latter one is assignable to E_{11}^* PL of the lf-SWCNTs-DAE. UV light irradiation to the lf-SWCNTs-DAE solution induced red-shifts of E_{11}^* PL peak. Moreover, visible light irradiation to the resultant solution induced the E_{11}^* PL peak shifts to the initial wavelength position. The reversible wavelength switching was repeatedly observed over 5 cycles. In UV/vis/NIR absorption measurements, photoisomerization of DAE on the lf-SWCNTs-DAE was confirmed by each light irradiation process. Thus, a photo-induced wavelength switching system for NIR PL has been created by the DAE functionalization.

T. Shiraki, *Chem. Lett.*, in press, DOI:10.1246/cl.200776. 2) T. Shiraki et al., *Acc. Chem. Res.* 2020, 53, 1846. 3) Y. Wang *et al.*, *Nat. Rev. Chem.* 2019, 3, 375. 4) T. Shiraki *et al.*, *Chem. Eur. J.* 2018, 24, 9393. 5) T. Shiraki *et al.*, *Chem. Eur. J.* 2018, 24, 19162. 6) T. Kawai *et al.*, *Eur. J. Org. Chem.* 2017, 17, 2451.