Development of high-affinity fluorescent probes for quantification of organellar labile Zn²⁺

(¹Graduate School of Life Sciences, ²IMRAM, Tohoku University)

• Rong Liu,¹ Toshiyuki Kowada,^{1,2} Toshitaka Matsui,^{1,2} Shin Mizukami^{1,2}

Keywords: Fluorescent probe; Protein-labeling technology; Organellar [Zn²⁺]; Quantification

Cellular zinc, of which homeostasis is tightly maintained by zinc transporters (ZIPs and ZnTs) and zinc buffer (metallothioneins and metalloproteins), plays several essential biological functions in a cell.¹ While the total concentration of intracellular Zn²⁺ is at μ M level, the labile Zn²⁺ concentration ([Zn²⁺]) is regulated at a much lower level (pM–nM).² To date, a large number of studies have devoted to the development of Zn²⁺ fluorescent probe for detecting the labile Zn²⁺ in cells. However, the subcellular [Zn²⁺] at the organelle level has not reached a

consensus, which might be because of the lack of robust probes and proper quantification methodology. In our recent study, through the combination of the rational design of a 7-aminocoumarin-based small-molecule fluorescent probe and the utilization of a protein-labeling technology, we developed a organelle-localizable green fluorescent Zn^{2+} probe ZnDA-1H, which has less-pH sensitivity and moderate affinity to Zn^{2+} ($K_d = 0.24 \mu M$).³ By co-labeling of HaloTag with ZnDA-1H and a Zn^{2+} -insensitive red fluorescent HaloTag ligand, HTL-TMR, as a standard, quantitative imaging of [Zn^{2+}] in the Golgi apparatus was achieved.

In this study, in order to achieve real-time monitoring of Zn²⁺ dynamics and quantitative mapping of $[Zn^{2+}]$ in the other cell compartments, such as the ER and nucleus, we developed new ZnDA derivatives with higher affinity to Zn^{2+} , resulting in ZnDA-2H ($K_d = 5.0$ nM) and ZnDA-3H ($K_d = 0.16$ nM). We investigated the fluorescence enhancement mechanism of the ZnDA-probes and assumed that binding with Zn2+ could hinder the transition to the twisted intramolecular charge transfer (TICT) state in the excited state. Both new probes showed nearly pH-independent fluorescence at various pH (5.5-8.0), suggesting that these probes could be used for monitoring of cellular Zn^{2+} fluctuation without the serious disturbance from pH change. Furthermore, considering the specific localization ability and suitable affinity, ZnDA-3H was used for quantification of organellar [Zn²⁺] in HeLa cells. Finally, quantitative [Zn²⁺] mapping of the cells was achieved, and the results implied that the $[Zn^{2+}]$ in the cytosol (0.15 nM) and nucleus (0.14 nM) are higher than the $[Zn^{2+}]$ in the ER (13 pM) and mitochondria (24 pM). Additionally, a significant increase of $[Zn^{2+}]$ in the ER (0.41 nM) was observed following the treatment of the ZIP7 inhibitor, and the $[Zn^{2+}]$ was retained at a higher level more than 20 min. This result indicated that the [Zn²⁺] in the ER is maintained at a very low level under the physiological condition and the high [Zn²⁺] might involve in the unfolded protein response and upregulation of ER stress.

T. Kambe, T. Tsuji, A. Hashimoto, N. Itsumura, *Physiol. Rev.* 2015, 95, 749; 2) W. Maret, *Adv. Nutr.* 2013, 4, 82; 3) T. Kowada, T. Watanabe, Y. Amagai, <u>R. Liu</u>, M. Yamada, H. Takahashi, T. Matsui, K. Inaba, S. Mizukami, *Cell Chem. Biol.*, 2020, 9, 1521.