Structural analysis of amyloid β hydrophobic core in the oligomeric state by encapsulation within an M₁₂L₂₄ cage

(¹*Graduate School of Engineering, The University of Tokyo*, ²*WPI-iCeMS, Kyoto University,* ³*Exploratory Research Center on Life and Living Systems*) \bigcirc Ryoto Suzuki,¹ Erina Takeuchi,¹ Takahiro Nakama,¹ Maho Yagi,³ Koichi Kato,³ Daishi Fujita,² Makoto Fujita¹ **Keywords**: *self-assembly; molecular encapsulation; amyloid* β ; *peptide; structural analysis*

Amyloid β (A β) is an aggregative peptide consisting of around 40 amino acids residues. A β is the main component of amyloid plaques often found in the brains of Alzheimer's disease patients. Recent studies show the soluble oligomeric state of A β exhibits significant neurotoxicity, but the nature of the A β oligomer is largely unexplored due to the rapid formation of insoluble A β fibril through the uncontrollable aggregation.¹ We previously found that the encapsulation within an M₁₂L₂₄ cage, self-assembled from palladium(II) ions (M) and organic bidentate ligands (L), effectively prevents undesired aggregation of proteins including A β proteins.² In this research, we sought to analyze the oligomeric structure of A β by encapsulating a specified number of A β fragments into an M₁₂L₂₄ cage.

The A β_{16-23} fragment (H-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-NH₂), which is the core of the hydrophobic β -strand, was studied to elucidate the A β oligomeric structure. One or two molecules of the A β_{16-23} fragments were tethered to bis(pyridine) ligands to afford 1 or 2, respectively (**figure a**). M₁₂L₂₄ cages containing only one or two A β_{16-23} fragments were self-assembled from 1 or 2 with ligand 3 and palladium(II) ions in DMSO-*d*₆ (**figure b**). The structures of encapsulated peptides were analyzed by 3D NMR measurements.

 J. A. Hardy, G. A. Higgins, *Science* **1992**, *256*, 184–185. 2) (a) K. Harris, D. Fujita, M. Fujita, *Chem. Commun.* **2013**, *49*, 6703–6712, (b) D. Fujita, *et al. Nat. Commun.* **2012**, *3*, 1093. (c) R.
Suzuki, D. Fujita, M. Fujita, the 99th CSJ annual meeting, **2019**, 1G3-49. (d) T. Nomura, R. Suzuki,
D. Fujita, M. Yagi, K. Kato, M. Fujita, the 99th CSJ annual meeting, **2019**, 1G3-48.