# Thioacid-based strategy for the semi-synthesis of glycoproteins 

( ${ }^{1}$ Graduate School of Science and ${ }^{2}$ Project Research Center for Fundamental Science ${ }^{2}$, Osaka University) $\bigcirc$ Kota Nomura ${ }^{1}$, Yuta Maki ${ }^{1,2}$, Ryo Okamoto ${ }^{1,2}$, Yasuhiro Kajihara ${ }^{1,2}$
Keywords: Thioacid; Oligosaccharide; Glycoprotein; Amide; Peptide

Protein semisynthesis is a powerful approach for the synthesis of homogeneous glycoproteins, employing the coupling of recombinant peptides and glycopeptides prepared by chemical synthesis.

Herein we have developed a new semisynthetic strategy for glycoproteins using glycosyl asparagine thioacid. This strategy can selectively couple two peptides with both of N and C termini of glycosyl asparagine thioacid. As shown in figure, we employed glycosyl asparagine thioacid as the junction point for the coupling of N and C terminal peptides. The first coupling is designed to perform between peptide thioacid $\mathbf{2}$ and glycosyl asparagine thioacid $\mathbf{1}$ applying our chemoselective amide formation. ${ }^{1}$ This amidation occurs through mild oxidation without drastic condensation reagents. Because the resultant glycopeptide $\mathbf{3}$ has thioacid form at its Cterminal, we could apply the thioacid capture ligation (TCL) ${ }^{2}$ for the coupling of the resultant glycopeptide thioacid $\mathbf{3}$ and another peptide $\mathbf{4}$ having disulfide functional group at its N terminal to afford glycopeptide $\mathbf{5}$. The glycoprotein $\mathbf{7}$ can be efficiently obtained by the subsequent desulfurization and folding of 6 . In this presentation, we will discuss chemical characteristic nature of glycosyl asparagine thioacid. The approach for the semisynthesis of glycoproteins will also be discussed.


1) a) Okamoto, R. et al. Biochemistry, 2019, 52, 1672. B) Okamoto, R. et al. Chem. Lett. 2019, 48, 1391.
2) a) Liu, C. F. et al. Tetrahedron, 1996, 37, 933. b) Zhang, X. et al. Chem. Commun. 2011, 47, 1746. c)

How, W. et al. R. Soc. Open Sci. 2018, 5, 172455

