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  In the current steam reforming process, the surface 

of nickel is mainly used as a catalyst due to its high 

reactivity and low cost. As shown in figure 1, 

Blaylock et al. used DFT calculations to examine the 

C-H bond cleavage of methane on the Ni(111) 

surface.1 The nickel surface can cleave the strong C-

H bond of methane, and further cleaving the C-H 

bonds produces CH*, the most energetically stable 

adsorbate of CHn* (n=1-4). By using heterogeneous 

catalyst that stabilize CH3* rather than CH*, it is 

expected that the intermediate CH3* will have a 

longer lifetime and coking will be suppressed. Based on this idea, we explored various binary 

alloys that enables the direct conversion of methane by a combination of DFT computation2 

and catalyst informatics. 

  The structure of each alloy was obtained from AFLOW3, the calculation database based on 

the Vienna ab initio simulation package (VASP). The surface energies of the low index planes 

of all alloys in the database were calculated by using CASTEP, and the lowest-energy surface 

was used for subsequent calculations. VASP was used for geometrical optimization of 

adsorption structures of CH3* and CH*. We calculated the adsorption energy of CH3* and CH* 

on each alloy surface, and evaluated the stability of CH3* versus CH*. The genetic algorithm-

based partial least squares (GA-PLS) regression is used to search effective catalyst. 

  310 alloys were retrieved from the AFLOW database. 

The stability of CH3* against CH* for 88 alloys was 

calculated. The GA-PLS regression model which 

predicts the reaction enthalpy (CH4→CH3*+H*) and the 

stability of CH3* versus CH *, was built with 88 training 

data. The coefficient of determination obtained by LOO-

CV was 0.625 for the former and 0.622 for the latter. The 

model predicted that 26 of the 222 alloys not included in 

the training dataset would satisfy both conditions. 

(shown in Figure 2) 
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Figure 1. Energy diagram for the C–H bond 
cleavage of methane on the Ni(111) surface. 
Data were taken from ref. 1.  
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Figure 2: Predicted values of ∆E(CH3, CH) 
and ∆H by PLS regression. ● means 
predicted values and ■ means data values 
contained in the training dataset. 
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