水溶液プロセスによるニオブ酸リチウムとその類縁化合物の合成 と電気化学的性質

(金工大¹) ○伊藤 勇太¹・露本 伊佐男¹

Aqueous solution synthesis process and electrochemical properties of lithium niobium oxides and their analogues (¹ *Kanazawa Institute of Technology*) OYuta Ito, ¹ Isao Tsuyumoto ¹

LiNbO₃-coated LiCoO₂ has been widely used in all-solid-state lithium-ion batteries, because LiNbO₃ suppresses interfacial resistance between solid electrolyte and LiCoO₂. In this study, LiNbO₃ and its analogues were prepared through new solution processes based on our previous research on KNbO₃¹⁾, and their electrochemical properties were investigated.

LiNbO₃ was successfully prepared by heating the lithium salt of peroxo-polyniobic acid, which formed by a reaction between NbC and H_2O_2 , at 400 - 500°C in air. The ionic conductivity of the powder compact of LiNbO₃ was estimated at $2.53x10^{-6}$ Scm⁻¹ from complex impedance plot in Fig. 1. The capacity of neat LiNbO₃ was small enough in the potential window in which LiCoO₂ was practically used as a cathode material, indicating LiNbO₃ serves as an ordinary ionic conductor appropriate for an intermediate layer. The charge-discharge properties of its solid solutions with V or T were also investigated.

Keywords: Niobium; Lithium; Oxide; Solution process; Ionic conductivity

全固体型リチウムイオン二次電池では,正極材 $LiCoO_2$ と固体電解質の間にニオブ酸リチウム($LiNbO_3$)が中間層として頻用されている。 $LiNbO_3$ を $LiCoO_2$ にコーティングすることにより,異相の形成が抑制され,界面抵抗が低減されるとされている。一方,我々はこれまでに新しい溶液プロセスによる $KNbO_3$ の合成に成功している ¹⁾。本研究では新しい溶液プロセスにより $LiNbO_3$ とその類縁化合物を合成し,その電気化学的性質を評価することを目的とした。

NbC と H_2O_2 から生成する過酸化ポリニオブ酸水溶液に LiOH を加えることで過酸化ポリニオブ酸リチウム水溶液を調製し、 $400\sim500$ で加熱することで LiNbO₃ を得ることに成功した。圧粉体試料のイオン導電率は交流インピーダンスプロットより 2.53×10^{-6} S cm⁻¹ と算出された(Fig. 1)。次に LiNbO₃ 自身の充放電特性を調べた結果,LiCoO₂ に使用される電位窓の範囲では容量をほとんど示さず,中間層に適した単純なイオン伝導体として,機能することが分かった。自然電位は 3.1 V vs Li であった。さらに Ti や V との複合酸化物を調製し,その結晶構造と Li イオンの充放電特性について評価した。

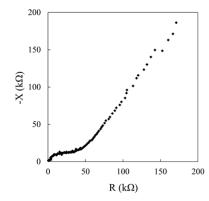


Fig. 1 Complex impedance plot of LiNbO₃.

1) Preparation of Nanocrystalline Perovskite KNbO₃ by Peroxo-Precursor Decomposition Method. I. Tsuyumoto, T. Arai, T. Kato, *Mat. Res. Bull.* **2010**, *45*, 1899-1902.