Synthesis of Methylammonium Hepta-Monomolybdate and Its Transformation by Heat-Treatment

Ndaru Candra Sukmana¹, Tatsuhiro Kojima², Masaru Fujibayashi¹, Sadafumi Nishihara¹, Masahiro Sadakane¹

¹Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan

²Osaka University, Toyonaka, Osaka 560-0043, Japan

Abstract

methylammonium hepta-monomolybdate $(CH_3NH_3)_8[Mo_7O_{24}-MoO_4]\cdot 4H_2O$ The was synthesized by the evaporation of solution resulting from the reaction of MoO₃ and methylamine. The solid crystallizes in the space group P-1, which is consists of [Mo₇O₂₄]⁶⁻ anion, [MoO₄]²⁻ anion, lattice water molecule, and methylammonium cation. The [Mo₇O₂₄]⁶⁻ anion is built up of seven condensed edgesharing MoO₆ octahedra. The crystal structure also contains co-crystallized monomolybdate [MoO₄]²⁻ anion with tetrahedral geometry as shown in Figure 1. A similar structure containing [Mo₇O₂₄]⁶⁻ and [MoO₄]²⁻ with butan-1-ammonium (BuNH₃) counter cation was also reported earlier [1]. The transformation of methylammonium hepta-monomolybdate was investigated by thermal treatment in the air. Based on powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), formation of various methylammonium isopolymolybdate such as (CH₃NH₃)₈[Mo₁₀O₃₄] and (CH₃NH₃)₄[Mo₈O₂₆], and molybdenum oxide such as hexagonal MoO₃ and orthorhombic MoO₃ were confirmed. The thermal transformation was similar to that of (NH₄)₆[Mo₇O₂₄]·4H₂O [2].

Keywords: Polyoxometalates, Molybdenum

Figure 1. Structure of (CH₃NH₃)₈[Mo₇O₂₄-MoO₄]·4H₂O. Mo, light blue; O, red; C, grey; N, blue

References:

- [1] A. Wutkowski, B. R. Srinivasan, A. R. Naik, C. Schütt, C. Näther, and W. Bensch, "Synthesis, structure, and photochemistry of an organic heptamolybdate- monomolybdate," *Eur. J. Inorg. Chem.*, pp. 2254–2263, 2011.
- [2] T. N. Kovács, D. Hunyadi, A. L. A. de Lucena, and I. M. Szilágyi, "Thermal decomposition of ammonium molybdates," *J. Therm. Anal. Calorim,* pp. 1013–1021, 2016.