Ni^{||}-フェノラート錯体及び Ni^{||}-フェノール錯体の酸素分子による酸化反応とプロトンの効果 (茨城大院理工¹)・○鈴木 崇¹・島崎 優¹ Oxidation of Ni^{II}-phenolate and Ni^{II}-phenol complexes with O₂: Effects of proton for oxidation (¹Graduate School of Science and Engineering. Ibaraki University) OTakashi Suzuki, ¹ Yuichi Shimazaki ¹ Copper amine oxidase (CAO) activates O₂ for conversion from a phenol moiety of the tyrosine residue in the active-site of the apo-protein to a 2,4,5-trihydroxyphenylalanine quinone (TPQ). In the formation process of the TPQ, a valence tautomer of the Cu^{II}-phenolate species, a Cu^I-phenoxyl radical, has been proposed to be formed.^[1] On the other hand, the TPQ biogenesis is also observed in apo-protein reconstituted with nickel ion. In this process, Ni^{II}-phenolate or Ni^{II}-phenol species has been proposed to activate O₂ to form Ni^{II}-phenoxyl radical intermediate without the redox of Ni^{II} ion. However, a detail formation mechanism of TPQ by Ni^{II} ion is still unclear. In this study, we have investigated the oxidation of the Ni^{II}-phenolate and/or Ni^{II}-phenol complex containing two different phenol moieties by O₂ and its detail reaction mechanisms. Keywords: enzyme models, dioxygen activation, phenoxyl radical CAO の触媒反応に必要な補酵素 TPQ は、CAO のアポ体に Cu^{II} イオンを導入することで生成し、この過程において、 Cu^{II} -フェノラート種の原子価互変異性体である Cu(I)-フェノキシルラジカル種が酸素分子を還元し、TPQ を生成することが知られている[1]。 一方、TPQ の生成は CAO のアポ体に Ni^{II}イオンを導入した場合においても 観測される $^{[2]}$ 。この過程において、 Ni^{II} -フェノラート種(もしくは Ni^{II} -フェノール種)が酸素分子を活性化し、 Ni^{II} -フェノキシルラジカルを中間体として与える。この際、酸素分子の活性化には Ni^{II} イオンは直接関与しないと推測されているが、 Ni^{II} 錯体と酸素分子との反応による TPQ の詳細な生成機構は未だ不明である。そこで本発表では、異なる二のフェノラート部位を有する Ni^{II} -フェノラート錯体、 Ni^{II} -フェノール錯体の酸素分子による酸化とその反応機構について報告する。 図 1:用いた配位子 - [1] J. P. Klinman, Chem. Rev., 1996, 96, 2541-2561. - [2] K. J. Humphreys, L. M. Mirica, Y. Wang, J. P. Klinman, J. Am. Chem. Soc., 2009, 131, 4657.