Effect of the Crystalline Structure on the Thermally-activated Catalytic Properties of TiO₂

 $(^{1}Osaka Research Institute of Industrial Science and Technology) \bigcirc Satoru Dohshi,^{1} Kazuki Maeda,^{1} Yoshiki Aoto^{1}$

Keywords: TiO₂, thermally-activated catalytic property, PM combustion, crystalline structure

TiO₂ has been utilized as photofunctional materials such as photocatalysts and solar cells. Moreover, TiO₂ has been expected as precious metal free oxidation catalyst due to its high thermally-activated catalytic property for the decomposition of volatile organic compound (VOC) with high concentration¹. However, the effects of the crystalline structure and crystallite size of TiO₂ on thermally-activated catalytic property have not been clarified. In this study, the effect of the crystalline structure of TiO₂ (anatase, rutile and brookite) on the thermally-activated catalytic property for PM combustion was investigated.

TiO₂ catalysts (JRC-TIO-7, JRC-TIO-16 and brookite type purchased from KOJUNDO CHEMICAL LABORATORY CO., LTD.) were calcined at 800 °C. Characterization studies were performed by XRD, BET surface area measurements and SEM observation. The model PM (carbon black #2600, Mitsubishi Chemical Co., Ltd.) and TiO₂ catalysts (weight ratio of 1 : 9) was ground for 15 min in an agate motar (tight contact). Catalytic tests were performed in a fixed-bed reactor at atmospheric pressure under a gas flow (50 mL/min) containing 5 % O₂ from room temperature to 800 °C with a heating rate of 10 °C /min. The CO and CO₂ concentrations in the reactor outlet were monitored with a quadrupole mass spectrometer.

Characterization studies revealed that TiO_2 catalysts were found to be composed of anatase, rutile and brookite single phases, respectively, even after calcination at 800 °C. BET surface areas for TiO_2 catalysts after calcination at 800 °C were 20 - 30 m² g⁻¹. As shown in Fig. 1, the PM combustion is promoted by mixing TiO_2 . The combustion temperatures of PM for TiO_2 catalysts are the following sequence, brookite < rutile <

anatase, which means that thermally-activated catalytic property of TiO_2 depends on the crystalline structure. It was also found from H₂-TPR measurement that the amount of lattice oxygen released from brookite type TiO_2 was the lowest among three TiO_2 catalysts, despite being the most active for PM combustion. These results suggest that the PM combustion mechanism for TiO_2 catalysts can be different from those of other metal oxide catalysts such as CeO_2 .

1) T. Makino et al, Jpn. J. Appl. Phys. 2007, 46, 6037.

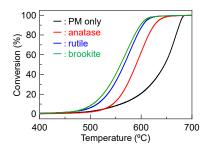


Fig. 1 PM conversion profiles as a function of temperature for TiO_2 catalysts.