アミロイド β 初期会合体の構造解析に向けた凝集性 C 末端断片の自己集合球状錯体への包接

(東大院工 1 ・分子研 2 ・iCeMS 3) ○竹内 絵里奈 1 ・鈴木 亮人 1 ・中間 貴寛 1 ・矢木 真穂 2 ・藤田 大士 3 ・加藤 晃一 2 ・藤田 誠 1,2

Encapsulation of amyloid β C-terminal cohesive fragments into a self-assembled cage complex for structural analysis of the initial oligomeric state (¹Graduate School of Engineering, The University of Tokyo, ²Institute for Molecular Science, ³Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University) ○Erina Takeuchi,¹ Ryoto Suzuki,¹ Takahiro Nakama,¹ Maho Yagi,² Daishi Fujita,³ Kouichi Kato,² Makoto Fujita¹.²

The aggregation of amyloid β (A β) proteins is associated with Alzheimer's disease, and the oligomers in the initial stage are suggested to cause the high neurotoxicity. It is strongly demanded to develop a method for structural analysis of the A β oligomers. We previously reported that the aggregation can be suppressed by encapsulating A β proteins within an $M_{12}L_{24}$ hollow spherical complex that forms through the self-assembly of Pd(II) ions and bent bis(pyridine) ligands. In this study, aiming to utilize the confinement effect for the structure analysis of A β aggregates, we encapsulated the cohesive C-terminal fragment of A β_{1-40} into the $M_{12}L_{24}$ cage. Two hydrophobic A β_{29-40} fragments were ligated with a bis(pyridine) to yield ligand 1. We examined the construction of an $M_{12}L_{24}$ complex that selectively encapsulates two A β_{29-40} molecules by the complexion of ligands 1 and 2 with Pd (II) ions. In this presentation, we will discuss the association behavior of the encapsulated A β fragments.

Keywords: amyloid beta, self-assembled cage, protein encapsulation, oligomeric structure, structural analysis

アルツハイマー病の原因とされるアミロイド β (α)の凝集において、初期会合体が神経毒性を有することが示唆されており、その構造解明が強く望まれている。我々は以前、 α (α)の計でなることで、その凝集を抑制できることを報告した α)。本研究では、この孤立空間への閉じ込めを用いた α 会合体の構造解析を目指し、 α (α)の凝集性 α 大端断片の α (α) を包抜せることで、その返集を行った。疎水性残基を多く含む α (α) を2 つ接合した配位子 α を合成した。配位子 α (α) を α (α) を選択的に包接した α (α) を α (α) を α (α) を選択的に包接した α (α) がよる。本発表では、包接された α (α) 断片の会合挙動について調べた結果を議論する。

1) 陳村拓也,鈴木亮人,藤田大士,八木真穂,加藤晃一,藤田誠,日本化学会第 99 春季年会, **2019**, 1G3-48.