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In general, the parameter space of materials science is quite huge. For example, the chemical
space of small organic molecules is known to consist of more than 10 candidates. In addition,
the dimensionality of the parameter space explodes with the addition of other design parameters
such as process, additives, and solvent selection in practical material development. Most
problems that we face come down to the identification of parameters that exhibit desired
properties from such a large search space. This is a multi-objective optimization problem. The
essential difference to general industrial design lies in the peculiarity and high dimensionality
of the parameter space. Conventional materials research has involved a time-consuming,
resource-intensive cycle of parameter design based on experience and intuition of human
experts, property assessments made by simulation and experiments, and revision of design
guidelines. However, there are barriers that cannot be overcome by such traditional approaches.
By introducing advanced technologies of data science into such a circulation process, we aim
to innovate the way of materials research. This is the mission of the interdisciplinary field called
materials informatics (MI). In this talk, [ present an overview of MI and some key technologies
of machine learning along with the concept of representation, learning, and generation of
various materials. Various applications (e.g., polymer design based on Bayesian inference
[1,2,3], machine learning for synthetic route planning [4], the integration of computational
chemistry and machine learning technology within the framework of adaptive design of
experiments, transfer learning to overcome limited data [5,6,7], prediction and computational
design of microstructure using deep generative models [8], etc.) will be introduced, covering
topics such as forward and inverse problems, representation and generation of materials
structure, transfer learning, interpolation and extrapolation, and laboratory automation based
on machine learning for adaptive experimental design strategy.
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