Preparation of Cu-doped TiO₂ catalyst for electrochemical CO₂ reduction

(¹WPI-I²CNER, Kyushu University, ²Institute for Materials Chemistry and Engineering, Kyushu University (IMCE), ³ WPI-AIMR, Tohoku University) O Akihiko Anzai,¹ Miho Yamauchi^{2, 1, 3}

Keywords: Electrochemical reduction of CO₂; TiO₂; Cu

Electrochemical reduction of CO_2 (ECO₂R) has recently attracted attention as a highly useful technology for CO_2 recycling. Cu exhibits high activity for ECO_2R^1 but still suffers from unsatisfactory selectivity towards CH₄, which is an extensively used fuel having a high energy density. CH₄ formation proceeds by the addition of 8 electrons and 8 protons to CO_2 (CO_2 + $8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$). In this process, CH₄ formation is thought to occur via *CHO formation by protonation of *CO. The *CHO formation competes with both the C-C coupling of two *CO and hydrogen evolution reaction (HER), which makes it difficult to achieve a highly selective ECO₂R to CH₄. The construction of isolated Cu sites has been found to effectively improve the selectivity for CH₄ production by suppressing the unfavorable C-C coupling.² In this study, we develop Cu-doped TiO₂ electrocatalysts presenting isolated Cu sites with high dispersion for the selective CH₄ production and examine their ECO₂R activity in detail.

Precursors of TiO₂ and Cu-doped TiO₂ (Cu-TiO₂) were prepared via a one-pot solvothermal method and calcined under air or H₂ atmosphere to obtain the desired TiO₂-y and xCu-TiO₂-y samples, where x and y are the doping amount of Cu (wt.%) and the calcination atmosphere, air or H₂. X-ray diffraction (XRD) patterns of xCu-TiO₂-y samples (x = 0-5wt.%) showed characteristic diffraction pattern attributable to the formation of anatase TiO₂ with a few weight percentage of brookite TiO₂ without no intensity from crystaline Cu. Fig. 1 shows high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of the 3Cu-

TiO₂-H₂ sample. Cu species with sizes of 1-3 nm, which are appeared as white dot-like objects, were well dispersed over a TiO₂ grain, indicating that isolated Cu clusters are formed on 3Cu-TiO₂-H₂. LSV measurements in CO₂-saturated KOH solution showed the reduction

current, indicating that both 3Cu-TiO2-air and 3Cu-TiO2-H2 Fig. 2. LSV curves measured in a exhibit ECO₂R activity (Fig. 2). The current density of

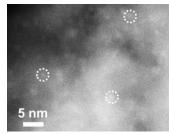
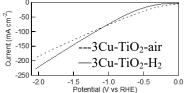



Fig. 1. HAADF STEM image of 3Cu-TiO₂-H₂. A few of clusters are highlited with a dotted circle.

CO₂-saturated 1 M KOH.

hydrogen-treated 3Cu-TiO₂-H₂ was higher than that of the other samples, which suggests that hydrogen treatment increases the ECO₂R activity.

1) S. Nitopi, et al. Chem. Rev. 2019, 119, 7610. 2) a) Y. Wang, et al., ACS Catal. 2018, 8, 7113. b) T. Zhang, et al., J. Electroanal. Chem. 2020, 875, 113862. c) X. Wang, et al., Nat Commun 2021, 12, 3387.