Mo-doped Pt/WO_x Nanowires with Plasmonic Effect for Enhancing Photothermal CO₂ Hydrogenation under Visible-infrared Light

(¹Graduate School of Engineering, Osaka University, ²Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, ³JST, PRESTO) \bigcirc Hao Ge,¹ Yasutaka Kuwahara,^{1,2,3} Kazuki Kusu,¹ Hiromi Yamashita^{1,2}

Keywords: CO₂ hydrogenation; Molybdenum doping; Oxygen vacancy; Photothermal catalysis

Plasmon-assisted photothermal catalytic hydrogenation of CO₂ provides an intriguing approach for realizing CO₂ reduction under mild conditions, because of the photo-induced electron-hole pairs generation and an overall increase in the localized temperature under the light irradiation.¹⁻² However, the poor photothermal conversion efficiency and a lower number of photoinduced electrons are the main factors responsible for limiting the applicability of the catalyst. Doped WO₃ can present surface plasmon resonance (SPR) capabilities, which can be adjusted by changing a dopant concentration. To investigate the potential of the WO_x plasmonic effect in CO₂ reduction reaction, we herein report the Mo-doped WO_x coupled with Pt nanoparticles (Pt/MoWO_x) significantly boosts the photothermal hydrogenation of CO₂ to CO.

The developed Pt/MoWO_x exhibits an excellent catalytic performance (3.1 mmol/h/g) in the photothermal reverse water-gas shift (RWGS) reaction at 140 °C, outperforming the un-doped Pt/WO_x (1.02 mmol/h/g). The X-ray photoelectron spectroscopy (XPS) and *in situ* X-ray absorption fine structure (XAFS) measurements revealed a reversible redox event of the Mo and W atoms during the RWGS reaction, certifying that the oxygen vacancies between Mo and W atoms in Pt/MoWO_x act as active sites, and the Pt nanoparticles activate H₂ to realize the regeneration of the oxygen vacancies.³

H. Ge, Y. Kuwahara, K. Kusu, H. Yamashita, J. Mater. Chem. A 2021, 9, 13898. 2) Y. Kuwahara, Y. Yoshimura, K. Haematsu, H. Yamashita, J. Am. Chem. Soc. 2018, 140, 9203. 3) Y. Kuwahara, T. Mihogi, K. Hamahara, K. Kusu, H. Kobayashi, H. Yamashita, Chem Sci. 2021, 12, 9902.