Synthetic studies of a fucosyl chitobiose as an allergenassociated carbohydrate epitope(III): Synthetic construction of tetrasaccharide unit

(¹Graduate School of Science and Engineering, Saitama University, ²Advanced Institute of Innovative Technology) ○ Wang Wentao,¹ Takahiko Matsushita,^{1,2} Tetsuo Koyama,¹ Kan Hatano,^{1,2} Koji Matsuoka^{1,2}

Keywords: tetrasaccharide, epitope, total synthesis

Fucosyl chitobiose [GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 3)GlcNAc] is known as an extremely valuable core structure of glycoconjugates such as *N*-linked glycoproteins in plants,¹ and the trisaccharide structure is suspected to be one of epitopes of allergy. A regioisomeric structure of the trisaccharide is also a fucosyl chitobiose having a nunique architecture [GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 6)GlcNAc], and this trisaccharidic structure is a well-known core structure ubiquitously found as *N*-linked glycoproteins in mammalians. Based on previous research², our proposal is to introduce one more L-fucose residue into the trisaccharidic structure, and the tetrasaccharide will be polymerized to evulate the biological feature of the corresponding glycopolymer.

In this stage, trisaccharide unit has been prepared from D-GlcNAc, L-Fucose and Dmannose as the starting materials. Improvement of yields for constructions of a building block A and a building block C was accomplished and building blocks A and B was condensed to yield the chitobiose unit, which was further glycosylated with building block C to afford the desired fucosyl chitobiose unit. In order to construct the difucosyl chitobiose, further chemical transformation wa neede. Thus, the Hanessian's reagent system³ was applied to open the 1-6-anhydro ring. The details of the reaction conditions and the subsequent gllycosidation using the Fucosyl donor will be presented.

- H. Ogawa, A. Hikijima, M. Amano, K. Kojima, H. Fukushima, I. Ishizuka, Y. Kurihara, I. Matsumoto, *Glycoconjugate J.*, 13 (1996), pp. 555-566.
- 2) K. Matsuoka, H. Yamaguchi, T. Koyama, K. Hatano, D. Terunuma, *Tetrahedron Lett.*, **51** (2010), pp. 2529-2532.
- 3) N.Sakairi, M.Hayashida, A. Amano, and H. Kuzuhara, J. *Chem. Soc.Perkin Trans. 1*,1, 1301-1313(1990)