H201-2pm-13

Effect of tritopic ligands on the formation mechanism of selfassembled Pd₆L₄ complexes

(¹*Graduate School of Arts and Sciences, The University of Tokyo*)

○Tsukasa Abe,¹ Shuichi Hiraoka,¹

Keywords: molecular self-assembly; palladium complex; kinetic control; tritopic ligand

Although the relation between the stability of coordination self-assemblies and their components, organic multitopic ligands, can be discussed based on thermodynamics, the effect of multitopic ligands on the formation mechanisms has scarcely been investigated. Previously, taken Pd₆L₄ assemblies consisting of tritopic ligands (L) and [*Pd*Py*₂](BF₄)₂, as examples, the self-assembly pathway to the [*Pd*₆L₄]¹²⁺ complexes was investigated for the tritopic ligands L with a triazine ring by quantitative analysis of self-assembly process (QASAP).¹

In this study, the self-assembly pathway to the $[Pd_61_4]^{12+}$ complex from the tritopic ligand 1 with a benzene ring, which is geometrically similar to 2, was investigated. It was found that the major self-assembly pathway to $[Pd_61_4]^{12+}$ is different from that of $[Pd_62_4]^{12+}$, whose self-assembly mainly takes place through the intermolecular reaction between $[Pd_22_2Py^*]^{4+}$ and $[Pd_22Py^*_2]^{4+}$ as a key reaction.^{1b} This difference is discussed based on the planarity, the coordination ability, and the negative cooperativity of the three coordination sites in 1 and 2.

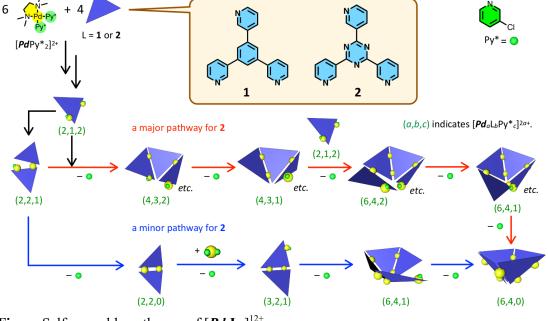


Figure Self-assembly pathways of $[Pd_6L_4]^{12+}$.

1) (a) S. Komine, S. Takahashi, T. Kojima, H. Sato, S. Hiraoka, *J. Am. Chem. Soc.* **2019**, *141*, 3178; (b) T. Tateishi, S. Takahashi, I. Kikuchi, K. Aratsu, H. Sato, S. Hiraoka, *Inorg. Chem.* **2021**, *60*, 16678.