## 自己集合性ナノキューブの安定化と分子内包メカニズムの理論的 研究

(横市大院生命ナノ ¹・東大院総合文化 ²・横市大院  $DS^3$ ) 〇村田萌 ¹・陳弘燁 ²・小林理 ¹・島崎智実 ¹・平岡秀一 ²・立川仁典 ³

Theoretical Study on Self-assembled Nanocubes: Stabilization and Encapsulation Process of Guest Molecules (<sup>1</sup>Graduate School of Science, Yokohama City University, <sup>2</sup>Graduate School of Arts and Science, The University of Tokyo, <sup>3</sup>Graduate School of Data Science, Yokohama City University) Omoe Murata, <sup>1</sup>Hongye Chen, <sup>2</sup>Osamu Kobayashi, <sup>1</sup>Tomomi Shimazaki, <sup>1</sup>Shuichi Hiraoka, <sup>2</sup>Masanori Tachikawa<sup>3</sup>

Hiraoka and coworkers reported that six gear shaped amphiphile molecules (GSA  $\mathbf{1}^{2^+}$ ) form a cube-shaped hexamer, i.e. nanocube  $\mathbf{1}_6^{12^+}$ , in water with high thermal stability. They also found that  $\mathbf{2}_6^{12^+}$ , which lacks methyl groups in  $\mathbf{1}_6^{12^+}$ , is less stable than  $\mathbf{1}_6^{12^+}$ . We have carried out molecular dynamics (MD) simulations for nanocubes  $\mathbf{1}_6^{12^+}$ ,  $\mathbf{2}_6^{12^+}$ , and  $\mathbf{3}_6^{12^+}$ . Here,  $\mathbf{3}_6^{12^+}$  has methyl groups only on the equator region in nanocube. The structure of  $\mathbf{2}_6^{12^+}$  was deformed due to the large fluctuation, while those of  $\mathbf{1}_6^{12^+}$  and  $\mathbf{3}_6^{12^+}$  maintained cube-shaped structures. Our MD study clearly indicated that methyl groups on the equator crucially stabilize nanocubes. *Keywords : Molecular Dynamics, Self-assembly, Amphiphile* 

平岡らは歯車状両親媒性分子 (GSA 1<sup>2+</sup>) 6 分子が水溶媒中で自己集合し、箱型構造 の「ナノキューブ  $\mathbf{1}_6^{12+}$ 」を形成することを報告した(Fig. 1) $^{1,2}$ 。また、平岡らはナ ノキューブ内の赤道部分(Fig. 1(b),点線部)のメチル基を欠いた $\mathbf{2}_6^{12+}$ が $\mathbf{1}_6^{12+}$ と比 ベ不安定であることを明らかにしており2、こ れらのメチル基はナノキューブの安定化にお いて重要である<sup>3</sup>。本研究では **1**<sub>6</sub><sup>12+</sup> , **2**<sub>6</sub><sup>12+</sup>に加 え、赤道にメチル基が存在し、かつ極部分の構 造が 2<sub>6</sub><sup>12+</sup>と同等である 3<sub>6</sub><sup>12+</sup>について分子動力 1: R1=R2=CH<sub>3</sub> 2: R1=R2=D 3: R1=CH<sub>3</sub>, R2=H 学 (MD) シミュレーションを実行した。Fig. 2 に MD シミュレーションのスナップショ Fig. 1. (a) ナノキューブ 16 GSA (b) ットを示す。**1**<sub>6</sub><sup>12+</sup>、**3**<sub>6</sub><sup>12+</sup>は構造の揺らぎが小

ットを小り。**1**6<sup>-</sup>、**3**6<sup>-</sup> は構造の揺らさが小さくナノキューブが箱型構造を維持する傾向が見られた一方、**2**6<sup>12+</sup>は揺らぎが大きくナノキューブの構造に歪みが見られた。したがって、極部分の構造はナノキューブ全体の安定性にほとんど影響しない一方で、赤道部分のメチル基はナノキューブ全体の安定化において重要であることが示唆された。

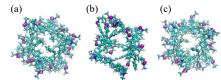



Fig. 2. MD シミュレーションの スナップショット (a) 1<sub>6</sub> (b) 2<sub>6</sub> (c) 3<sub>6</sub>

- 1) S. Hiraoka et al., J. Am. Chem. Soc. 130, 14368-14369 (2008).
- 2) Y.-Y. Zhan et al., Commun. Chem. 1, 14 (2018).
- 3) J.Koseki et al., Theor. Chem. Acc. 130, 1055-1059 (2011).