Synthesis and photochemical properties of cerium(III) coordination polymer with pentafluorobenzoate

(¹School of Engineering, Hokkaido University, ²Faculty of Engineering, Hokkaido University, ³WPI-ICReDD, Hokkaido University, ⁴Faculty of Science, Hokkaido University) ○Toranosuke Tomikawa¹, Sunao Shoji^{2,3}, Tomoko Akama⁴, Masato Kobayashi^{3,4}, Koji Fushimi², Tetsuya Taketsugu^{3,4}, Yasuchika Hasegawa^{2,3}, Yuichi Kitagawa^{2,3}

Keywords: Cerium, Coordination polymer, Charge transfer, Photochemical reaction, 4f orbital

Recently, inorganic Ce(III) compounds have attracted attention for use as luminescent and photocatalytic materials based on the 4f orbitals ^[1-3]. In contrast, photo-functional properties of Ce(III) complexes with π -conjugated ligands have rarely been reported. In this study, our electronic structure calculation of Ce(hfa)₃(TPPO)₂ (hfa: hexafluoroacetylacetonate, TPPO: triphenylphosphine oxide) revealed that the energy level of metal-to-ligand charge transfer (MLCT) is higher than that of ligand π - π * (S₁) states,

suggesting that the MLCT excited state is quenched by the S_1 and T_1 states. Thus, we synthesized Ce(III) coordination polymers (Ce-PFBA: Fig. 1) using strong accepter-type ligand (PFBA: pentafluorobenzoate) and evaluated its photophysical and photochemical properties based on the MLCT transition. We also prepared La(III) coordination polymer (La-PFBA) as a reference.

The diffuse reflectance spectra of the Ln-PFBA (Ln = Ce, La) are shown in Fig. 2. The characteristic MLCT band was observed at around 330 nm for the Ce-PFBA. From the emission measurement of the Ce-PFBA, MLCT emission band was observed at around 430 nm, suggesting the formation of stable MLCT excited state. We also found the fenton-like reaction using Ce-PFBA.

[1] M. P. Đorđević et al., *Mater. Chem. Phys.* 236, **2019**, 121816, [2] A. Hu et al., *Science* 361, **2018**, 668, [3] Y. Ly et al., *RSC Adv.* 3, **2013**, 13659.