Construction of cyanide-bridged Co-W assemblies exhibiting a thermal phase transition near room temperature

(¹*Graduate School of Science, University of Tokyo*)

OKazuki Nakamura,¹ Koji Nakabayashi,¹ Kenta Imoto,¹ Shin-ichi Ohkoshi,¹

Keywords: Charge transfer phase transition; Cyanido-bridged metal assembly

Phase transitions in solids are important for the development of functionalities and the control of magnetic, electric, and optical properties. Cyanido-bridged metal assemblies are good candidates for phase transition materials, because they exhibit various phase transitions related to spin crossover, ferromagnetic ordering, and charge transfer.¹ We have reported cyanido-bridged Co-W assemblies exhibit a large thermal hysteresis based on the charge

transfer between Co^{II/III} and W^{V/IV} sites. ² Bistability at room temperature is an important factor developing functionalities. Thus, we synthesized a cyanide-bridged Co-W assembly with bistable phases at room temperature, $Cs^{+}_{0.1}(H_5O_2^{+})_{0.9}[Co(4-bromopyridine)_{2.3}{W(CN)_8}]$ (CsCoW), which is a Cs⁺-substituted compound of (H₅O₂⁺)[Co(4-bromopyridine)₂{W(CN)₈}] showing a Co^{III}-W^{IV} phase over a wide temperature range of 2-390 K.³

The red powder of CsCoW was prepared by mixing an aqueous solution of Co^{II}Cl₃·6H₂O, 4-bromopyridine hydrochloride, and CsCl, with an aqueous solution of $Cs_3[W(CN)_8] \cdot 2H_2O$ and CsCl. The crystal structure of CsCoW has a-two-dimensional cyanido-bridged Co-W layers with oxonium ions and Cs⁺ ions between the layers (Figure 1). Figure 2 shows the product of the molar magnetic susceptibility (χ_M) and temperature (*T*) vs. *T* plot of CsCoW. The thermal hysteresis loop with $\Delta T = 53$ K shows bistability at room temperature. The magnetic study, variable-temperature UV-vis and IR absorption spectroscopies revealed a charge transfer-induced phase transition between a Co^{II}-W^V high temperature phase and a Co^{III}-W^{IV} low temperature phase.

Fig. 1. Crystal structure of **CsCoW** viewed along the *b* axis.

Fig. 2. $\chi_M T$ -T plot of CsCoW at 1000 Oe.

S. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, *Nature Photonics*. 2014, *8*, 65.
S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, *J. Am. Chem. Soc.* 2006, *128*, 5320.
Y. Miyamoto, T. Nasu, N. Ozaki, Y. Umemura, H. Tokoro, K. Nakabayashi, S. Ohkoshi, *Dalton.* 2016, *45*, 19289.