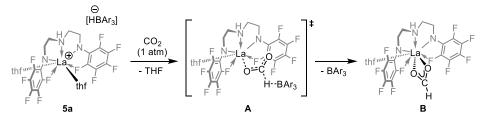

N-Methylation of Amines *via* CO₂ Fixation Catalyzed by Lanthanum Hydridotriarylborate Complexes Supported by a *N*,*N*"-Diarylethylenetriamine Ligand


(Graduate School of Engineering Science, Osaka University) OKoichi Shinohara, Hayato Tsurugi, Kazushi Mashima

Keywords: Carbon Dioxide; *N*-Methylation; Lanthanum Complex; DFT Study; Non-covalent Interaction

Carbon dioxide (CO_2) is an inexpensive and renewable C1 feedstock for producing various chemical compounds, although its thermodynamic stability makes it difficult to directly fix into organic compounds.^{1,2} Transition metal-catalyzed hydrosilylation of CO₂ using hydrosilanes as reductants is one of synthetically effective methods to produce silvlformates (HCO_2SiR_3) and bis(silyl)acetals (CH₂(OSiR₃)₂), both of which are useful C1 sources. Herein, we report N-methylation of anilines via the reduction of CO₂ by PhSiH₃, which was catalyzed by a lanthanum complex, $La(L)[N(SiHMe_2)_2](thf)$ (L = а dianionic N.N"bis(pentafluorophenyl)diethylenetriamine ligand), upon treated with $B(3.4,5-F_3C_6H_2)_3$ (eq. 1). Lanthanum hydridoborate complex, [La(L)(thf)₂][HB(3,4,5-F₃C₆H₂)₃] (5a), was characterized by NMR measurements as a key intermediate. DFT calculations revealed that the transition state species A involves the coordination of CO_2 to the lanthanum center through an interaction of the electrophilic carbon of CO₂ with hydride on the borate anion, and subsequent elimination of $B(3,4,5-F_3C_6H_2)_3$ generates lanthanum formate species **B** (Scheme 1). Details of substrate scope and reaction mechanism are discussed in this presentation.

1) K. Sakakura, J.-C. Choi, H. Yasuda, *Chem. Rev.* **2007**, *107*, 2365. 2) Y. Li, X. Fang, K. Junge, M. Beller, *Angew. Chem., Int. Ed.* **2013**, *52*, 9568.