
Surface Attachment and Circularly Polarized Luminescence of Luminous Terbium Complex on Silica Surface with Chiral Ligands

(¹Dept. Chem. Nagoya Univ., ²Dept. Appl. Chem. Kindai Univ. ³RCMS, Nagoya Univ.)
OSora Shirai, ¹Kensuke Ikeda, ² Satoshi Muratsugu, ¹ Hidetaka Nakai, ² Mizuki Tada^{1,3}
Keywords: Chirality; Silica Surface; Chiral Ligand; Terbium Complex; Circularly Polarized Luminescence

Chiral metal complexes immobilized on solid surfaces are investigated for applications to solid chiral sensors, heterogeneous asymmetric catalysts etc. We investigated a new preparation method of surface-attached chiral metal complexes via chirality induction of metal complexes on a solid surface modified with chiral ligands. The induction of the chirality of an achiral terbium (Tb) complex $(1_{Tb})^1$ was investigated on a silica (SiO₂) modified with chiral benzyl alcohol ligands (Figure 1).

SiO₂ surface was modified with newly-prepared chiral benzyl alcohol ligands (L(R/S)) and SiO₂ attaching the chiral ligands ($L(R/S)/SiO_2$) was prepared. UV-vis and FT-IR suggested

that the structure of L(R/S) was maintained on the SiO₂ surface. The solid-state CD of $L(R/S)/SiO_2$ showed inversed peaks at 230 nm (Figure 2(A)), which was similar to the solution-state CD of L(R/S), suggesting that the chirality of L(R/S) was retained on the SiO₂ surface.

1_{Tb} was attached to **L**(*R*/*S*)/SiO₂ by the impregnation method (**1**_{Tb}/**L**(*R*/*S*)/SiO₂). The DR UVvis of **1**_{Tb}/**L**(*R*/*S*)/SiO₂ showed absorption peak at around 301 nm (Figure 2(B)), which was similar to the solutionstate UV-vis of **1**_{Tb}, suggesting that the structure of **1**_{Tb} was kept on the SiO₂ surface. The solid-state CPL of **1**_{Tb}/**L**(*R*/*S*)/SiO₂ showed inversed CPL peaks around 550 nm, which suggested that the chirality of **1**_{Tb} was actually induced by the coordination of **1**_{Tb} to **L**(*R*/*S*)/SiO₂. The CPL peak intensities of **1**_{Tb}/**L**(*R*/*S*)/SiO₂ were obviously larger than that of **1**_{Tb}/(*R*/*S*)-1-phenylethanol in acetonitrile solution. These results strongly indicated that the unique CPL property of **1**_{Tb} was induced at the SiO₂ surface by the coordination to the surface-functionalized chiral ligands. 1) H. Nakai, *et al.*, *Chem. Commun.*, **2014**, *50*, 15737-15739.

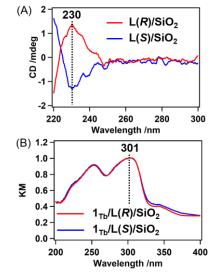


Figure 2. (A) Solid-state CD spectra of $L(R/S)/SiO_2$. (B) DR UV-vis spectra of $1_{Tb}/L(R/S)/SiO_2$.