
## A Formal Synthesis of Atorvastatin through Halogen Dance of Pyrrole

(<sup>1</sup>Department of Chemical Science and Engineering, Kobe University, <sup>2</sup>Research Center for Membrane and Film Technology, Kobe University) OTatsuki Okumi,<sup>1</sup> Daichi Matsuyama,<sup>1</sup> Suguru Hirai,<sup>1</sup> Kentaro Okano,<sup>1</sup> Atsunori Mori<sup>1,2</sup>

Keywords: Multiply substituted pyrrole; Organolithium; Transmetalation; Regioselective functionalization

The pyrrole substructure is involved in pharmaceuticals such as atorvastatin, tolmetin, and ketorolac. We have recently achieved a total synthesis of lamellarins using a halogen dance reaction of an  $\alpha,\beta$ -dibromopyrrole.<sup>1</sup> Herein we developed the halogen dance of  $\alpha,\alpha'$ -dibromopyrrole to expand the scope of this reaction and applied the method to a formal synthesis of atorvastatin.

In a preliminary experiment 2,5-dibromopyrrole 1 bearing an ethyl group on nitrogen underwent halogen dance to provide the corresponding product 2 in low yield after electrophilic trapping. The reaction was sluggish compared to that of 2,5-dibromothiophene.<sup>2</sup> We next investigated the effects of a substituent on nitrogen to promote the formation of  $\beta$ -pyrrolyllithium 3 and halogen dance to generate  $\alpha$ -pyrrolyllithium 4. Electron-withdrawing groups such as a Ts or a Boc group resulted in better yields of the products. After extensive optimization, we found a sulfonyl group, which have been rarely used as a protecting group of pyrroles, facilitated the halogen dance. The two bromo groups in dibromopyrrole 2 possessed distinct reactivities, which allowed the stepwise transformation to give a trisubstituted pyrrole. The synthetic utility of the newly established method was demonstrated by a synthesis of the pyrrole subunit of atorvastatin 5. The detail of the substituent effects on halogen dance will be discussed.



1) Morikawa, D.; Morii, K.; Yasuda, Y.; Mori, A.; Okano, K. J. Org. Chem. 2020, 85, 8603-8617.

2) Okano, K.; Sunahara, K.; Yamane, Y.; Hayashi, Y.; Mori, A. Chem. Eur. J. 2016, 22, 16450-16454.