The Interaction of Mesoionic Benzo[c]tetrazolo[2,3a]cinnolinium-2-olate with Hydroxy Groups

(Graduate School of Engineering, Nagoya Institute of Technology) \bigcirc Mirai Nakata, Tsunehisa Hirashita,

Keywords: mesoionic compounds, co-crystals, pseudo-polymorphism, crystal structure, intermolecular interaction

Mesoionic compounds have characteristic electronic states, and are classified into five groups, among which class 5 mesoionic compounds are particularly interesting because they exhibit more polarized properties than other mesoionic compounds.^{1,2} Experimental studies of class 5 mesoionic compounds, however, are strictly limited. Class 5 mesoionic compounds are normally stabilized by forming hydrogen bond between the exocyclic atom and a donor group.³ We have found that benzo[c]tetrazolo[2,3-a]cinnolinium (BTCs) is a class 5 mesoionic compound that can be handled stably under ambient conditions.⁴ We report here that synthesis of BTC olate 1 and a variety of solvated crystals of 1 with several small molecules including methanol, formic acid, acetic acid, propionic acid and trifluoro acetic acid. In addition, these crystals were analyzed using single crystal X-ray structure analysis and symmetry-adapted perturbation theory (SAPT) calculations.

BTC•H₂O **1aa** was isolated by reprecipitation from a solution of anhydride **1** in acetonitrile-H₂O, and X-ray-suitable crystals were obtained through slow volatilization from a CH₂Cl₂/EtOH solution of **1aa** (Fig. 1), while from a solution containing a small amount of Et₃N, BTC•H₂O **1ab** with different space groups was obtained (**1aa**: orthorhombic, **1ab**: monoclinic). A series of pseudopolymorphic crystals **1b-f** were isolated from solutions of **1** in methanol, formic acid,

acetic acid, propionic acid, or trifluoro acetic acid, and their single-crystal X-ray structure analysis revealed that hydrogen bonds form between the tetrazolium olate group and the hydroxy groups (Table 1). The interaction energy analysis of **1a-f** at the SAPT0/jun-cc-pVDZ level proposed relatively large electrostatic interaction in **1c**, **1d** and **1f**.

1a: R = H, 1b: R = Me,

Table 1. Hydrogen bond geometry and SAPT0 interaction energy of BTC olate 1 with hydroxy groups.

		$ \begin{array}{c} $	$1c: R = \underbrace{H}_{H}, 1c$ $1e: R = \underbrace{H}_{Et}, 1c$	$d: R = \bigcup_{\substack{O \\ O \\ CF_3}}^{O} Me$	
Mol.	Solvate	Hydrogen bond geometry ^a		Intermolecular interaction energy ^b	
		D-A distance [Å]	D-H-A angle [°]	Eelst [kcal/mol]	Etotal [kcal/mol] c
1aa	H ₂ O (orthorhombic)	2.809(7)	147.75	-13.03	-9.16
1ab	H ₂ O (monoclinic)	2.810(4)	174.87	-14.17	-10.34
1b	methanol	2.7483(14)	176.68	-11.13	-7.44
1c	formic acid	2.5826(19)	164.79	-21.56	-15.16
1d	acetic acid	2.564(2)	175.07	-23.42	-15.94
1e	propionic acid	2.561(3)	169.32	-16.90	-9.72
1f	TFA	2.457(3)	168.76	-26.90	-16.59
^a Magnurgment by V ray differentian of single arystal structure analysis ^b Calculation at SAPTO/jun on pVDZ loyal ^c E = = E = +					

^a Measurement by X-ray diffraction of single crystal structure analysis. ^b Calculation at SAPT0/jun-cc-pVDZ level. ^c $E_{total} = E_{elst} + E_{exch} + E_{ind} + E_{disp}$

¹ W. P. Oziminski, C. A. Ramsden, *Tetrahedron* **2015**, *71*, 7191. ² C. A. Ramsden, *Prog. Heterocycl. Chem.* **2016**, *28*, 1. ³ C. A. Ramsden, W. P. Oziminski, *Tetrahedron Lett.*, **2019**, *60*, 150876. ⁴ M. Nakata, T. Hirashita, 99th Annual Meeting of the Chemical Society of Japan, Japan, 2PB-177, **2019**.