
Total Synthesis of Lamellarins U and A3

(¹Department of Chemical Science and Engineering, Kobe University, ²Research Center for Membrane and Film Technology, Kobe University) OYuya Okui,¹ Yuto Yasuda,¹ Kentaro Okano,¹ Atsunori Mori^{1,2}

Keywords: Pyrrole; Total synthesis; Halogen dance

Lamellarins are marine natural products possessing a persubstituted pyrrole moiety.¹ We have recently reported a total synthesis of lamellarins through a halogen dance reaction of α , β -dibromopyrrole derivative 1.² Treatment with LDA led to the formation of β -pyrrolyllithium 2, which was transformed into a thermodynamically more stable α -pyrrolyllithium 3. However, the two bromo groups at the two β positions have a similar reactivity, therefore the regioselective arylation was difficult.

Herein, we achieved a total synthesis of lamellarins U and A3 interrupting the halogen dance reaction.³ Pyrrolylmagnesium reagent **4**, which was generated by deprotonative metalation of α , β -dibromopyrrole **1** using (TMP)MgCl·LiCl at -40 °C, was transmetalated into the corresponding organozinc species. Subsequent Negishi cross coupling with aryl iodide **5** furnished the desired monoarylated dibromopyrrole **6**. After lactonization, the lamellarin skeleton was constructed through a regioselective halogen–magnesium exchange at the α position followed by carboxylation and cyclization with stoichiometric palladium acetate. Lamellarin U and A3 were synthesized by the late-stage introduction of another aryl group.

1) Andersen, R. J.; Faulkner, D. J.; Cun-heng, H.; Van Duyne, G. D.; Clardy, J. *J. Am.Chem. Soc.* **1985**, *107*, 5492. 2) a) Morikawa, D.; Morii, K.; Yasuda, Y.; Mori, A.; Okano, K. J. Org. Chem. **2020**, *85*, 8603. b) Morii, K.; Yasuda, Y.; Morikawa, D.; Mori, A.; Okano, K. J. Org. Chem. **2021**, *86*, 13388. 3) Okui, Y.; Yasuda, Y.; Mori, A.; Okano, K. Synthesis, accepted.