
Reaction Optimization of Electrochemical Synthesis of Ketimines by Machine-Learning-Assisted Multiparameter Screening

(¹Graduate School of Engineering, Ibaraki University, ²SANKEN, Osaka University) OMasaru Kondo^{1,2}, Akimasa Sugizaki², Khalid Md Imrul², H. D. P. Wathsala², Kazunori Ishikawa², Satoshi Hara², Takayuki Takaai², Takashi Washio², Shinobu Takizawa², Hiroaki Sasai²

Keywords: Chemoinformatics, Electrochemical Oxidation, Bayesian Optimization

Reaction optimization is an inevitable step for developing a novel reaction. A traditional exhaustive screening by a chemist is often time-consuming and costly. Machine-learning-assisted screening and optimization have been increasingly utilized in organic synthesis to reach optimal reaction conditions, rapidly. Among them, multi-parameter screening using Bayesian optimization (BO) is an attractive and robust tool since this algorithm efficiently finds a global maximum with a small number of experimental data.¹ Here, we report BO-assisted multiparameter screening for electrochemical synthesis of cyclic ketimines.

To optimize five kinds of reaction parameters for the electrochemical oxidation of 1 such as concentration of 1 (5–20 mM) and LiClO₄ (0.05–0.2 M) in CH₃CN, current (1–5 mA), temperature (25–60 °C), and reaction period (60–180 min), we collected five experimental data to obtain 2 (8–65% yield). Using BO and these dataset, next parameters to examine were suggested. When we evaluate these variables by an experiment, the cyclic ketimine 2 was obtained in 60%. Repeating further six times of BO-assisted screening to improve the yield of 2, we found suitable reaction conditions affording the desired product 2 in 72% yield ([1]: 10.4 mM, [LiClO₄]: 0.19 M, current: 3 mA, temperature: 45 °C, reaction period: 120 min).²

1) B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, A. G. Doyle, *Nature*, **2021**, *590*, 89. 2) M. Kondo, A. Sugizaki, K. M. Imrul, H. D. P. Wathsala, K. Ishikawa, S. Hara, T. Takaai, T. Washio, S. Takizawa, H. Sasai, *Green Chem.* **2021**, *23*, 5825.