Cu(II)-mediated stabilization of DNA duplexes having different numbers of $1, N^6$ -ethenoadenine lesions as metal binding sites

(¹*Graduate School of Science, The University of Tokyo*) OSilpa Chandran Rajasree,¹ Yusuke Takezawa,¹ Mitsuhiko Shionoya¹

Keywords: Artificial DNA, Metal-mediated base pairs, Duplex stabilization, Metal assembly

The interactions of ligand-type nucleobases with metal ions can result in the formation of metal-mediated unnatural base pairs, often accompanied by characteristic thermal stabilization of DNA duplexes.^[1] Metal-mediated base pairing is recently being utilized for controlling DNA structure and functions. The synthesis and optimization of aforementioned metal-mediated base pairs is an important cornerstone in the development of advanced metal-responsive DNA architectures such as allosteric DNAzymes.^[2]

In this study, $1, N^6$ -ethenoadenine (ϵA), a well-known damaged nucleobase, was used as a ligand-type nucleobase for metal-mediated base pairing (Figure (a)).^[3] It was previously reported that εA forms a Cu^{II}-mediated base pair (i.e., εA -Cu^{II}- εA) in DNA duplexes,^[4] but no significant duplex stabilization was observed ($\Delta T_{\rm m} = +3 \,^{\circ}{\rm C}$). Since ϵA -Cu^{II}- ϵA base pairs are stabilized by stacking interactions, we hypothesized that the thermal stabilization of the duplex would be more pronounced with the incorporation of consecutive $\varepsilon A - Cu^{II} - \varepsilon A$ base pairs (Figure (b)). Melting experiments showed that duplexes with one and two pairs of $\varepsilon A - \varepsilon A$ (duplex I and II) were hardly stabilized by the addition of stoichiometric equivalents of Cu^{II} ions ($\Delta T_{\rm m} = -0.2$ °C and ± 1.0 °C, respectively). In stark contrast, the thermal stability of DNA duplexes with three and four consecutive EA-EA pairs (duplex III and IV) was dramatically improved in the presence of stoichiometric equivalents of Cu^{II} ($\Delta T_m = +13.3$ °C and +16.5 °C, respectively; $[duplex] = 20 \,\mu\text{M}$). The formation of multinuclear Cu^{II} complexes such as III \cdot Cu₃ and IV·Cu₄ was confirmed by ESI mass spectrometry in the presence of Cu^{II} ions. Upon addition of Cu^{II} ions to the duplexes, the fluorescence signal of the fluorescent ϵA nucleobases was quenched, confirming that each εA base was coordinated to the Cu^{II} ion. These results indicate that the stabilization of the duplex is achieved by the formation of interstrand εA -Cu^{II}- ϵA base pairs. This study established that the incorporation of at least three consecutive ϵA -Cu^{II}-EA pairs is essential for the metal-dependent stabilization of the duplex structure. This Cu^{II} -mediated duplex stabilization assures the usefulness of the ϵA - Cu^{II} - ϵA pair in the construction of metal-responsive DNA architectures.

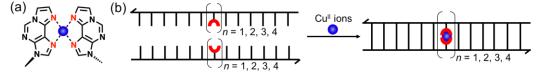


Figure (a) Chemical structure of Cu^{II}-mediated ethenoadenosine base pairs (ϵA -Cu^{II}- ϵA). (b) Formation of DNA duplexes containing different numbers of ϵA -Cu^{II}- ϵA base pairs.

Y. Takezawa, J. Müller, M. Shionoya, *Chem. Lett.* **2017**, *46*, 622. [2] T. Nakama, Y. Takezawa, D. Sasaki, M. Shionoya, *J. Am. Chem. Soc.* **2020**, *142*, 10153. [3] S. C. Rajasree, Y. Takezawa, M. Shionoya, The 101st CSJ Annual Meeting, A25-4am-03. [4] S. Mandal, C. Wang, R. K. Prajapati, J. Kösters, S. Verma, L. Chi, J. Müller, *Inorg. Chem.* **2016**, *55*, 7041.