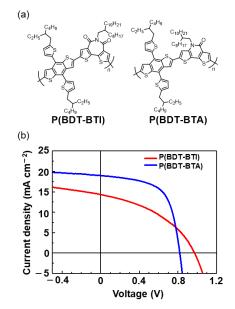
環状イミド・アミド骨格を基盤とする π 共役ポリマーの光電変換特性


(九大院工¹・ 九大稲盛フロンティア研²) ○槌井 雄一^{1,2}・免田 大樹^{1,2}・黄 善彬²・安田 琢麿^{1,2}

Photovoltaic properties of π -conjugated polymers based on fused cyclic imide and amide skeletons (${}^{1}Graduate\ School\ of\ Engineering,\ Kyushu\ University$, ${}^{2}IFRC$, Kyushu University) \bigcirc Yuichi Tsuchii, 1,2 Menda Taiki 1,2 , Sunbin Hwang 2 , Takuma Yasuda 1,2

 π -Conjugated polymers, **P(BDT-BTI)** and **P(BDT-BTA)**, based on cyclic imide and amide skeletons were designed and synthesized for the application in organic solar cells (OSCs) (Fig.1a). By introducing electron-withdrawing imide and amide groups, **P(BDT-BTI)** and **P(BDT-BTA)** exhibited deep HOMO levels, leading to the enhancement of open-circuit voltage in OSCs. In addition, transmission electron microscopy revealed fine phase separation structures in the blend films with a typical non-fullerene acceptor material, IT-4F. In the X-ray structural analysis, **P(BDT-BTA)** blended films exhibited strong peaks attributed to π - π stacking interactions and high crystallinity, while no strong peak was observed in the **P(BDT-BTI)** blended films. As a result, a maximum power conversion efficiency as high as 9.6% was obtained for OSCs using **P(BDT-BTA)** as a donor material by combining with IT-4F, without any processing additives and/or additional post-treatments (Fig.1b).

Keywords: organic solar cells, photovoltaics, semiconducting polymers, fused-ring compounds, solution process

有機薄膜太陽電池 (OSC) の高効率化を指向 して、環状イミド・アミド骨格を有する π 共 役ポリマーP(BDT-BTI)、P(BDT-BTA)を設計・ 合成した(Fig.1a)。電子求引基であるイミド・ アミド部位の導入により、HOMO 準位が低下 することで OSC において比較的高い開放電圧 が得られた。さらに透過型電子顕微鏡観察に おいて、これらのポリマーと代表的な非フラ ーレンアクセプター材料 IT-4F との混合膜で は、微細な相分離構造を形成していることが 示された。X線構造解析において、P(BDT-BTI) 混合膜は強いピークが観測されなかったのに 対し、**P(BDT-BTA)**混合膜は π-π スタック相互 作用に基づく強いピークが観測されたことで 高い結晶性が確認できた。その結果、P(BDT-BTA)をドナー材料として用いた OSC では微 細な相分離構造、高い開放電圧、face-on 配向 に起因する高い結晶構造により、熱処理や添 加剤無しで最大9.6%の高い光電変換効率が得 られた (Fig.1b)。

Fig1. (a) Molecular structures of synthesized polymers. (b) *J-V* curves