## 外部磁場印加によるペロブスカイト量子ドットからの磁気円偏光 発光(MCPL)

(¹近畿大・²奈良先端技術大学院大) ○尼崎凌¹・北原真穂¹・木元隆裕¹・藤木 道也²・今井 喜胤¹

Magnetic Circularly Polarized Luminescence (MCPL) from Perovskite Quantum Dots under Magnetic Field. (<sup>1</sup>Kindai University, <sup>2</sup>Nara Institute of Science and Technology)

ORyo Amasaki<sup>1</sup>, Maho Kitahara<sup>1</sup>, Takahiro Kimoto<sup>1</sup>, Michiya Fujiki<sup>2</sup>, Yoshitane Imai<sup>1</sup>

We have succeeded in emiting sharp magnetic circularly polarized luminescence (MCPL) from organic-inorganic luminescent materials containing Eu(III) and Tb(III).

In this study, we have investigated the MCPL properties of achiral perovskite quantum dots  $CH_5N_2PbBr_3$  (PQVD-1) and  $CsPbBr_3$  (PQVD-2) by applying an external magnetic field in the solution state. Interestingly, despite the lack of chirality, both PVQD-1 and PVQD-2 showed MCPL properties in the toluene solution.

Keywords: Magnetic circulary polarized luminescence(MCPL); Perovskite; Quantum Dot; Chiral; Circularly polarized electroluminescence(CPEL)

当研究室では、ラセミ体の Eu(III)(hfa)<sub>3</sub> あるいは Tb(III)(hfa)<sub>3</sub> などのランタノイド発光体に外部磁場を印加することにより、Eu(III)または Tb(III)由来の磁気円偏光発光(MCPL)の発現に成功している。<sup>1)</sup> さらに、Eu(III)および Tb(III)を含んだアキラルな無機発光体

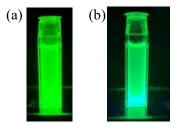



Fig. 1 Photographs of photoluminescence from (a) PVQD-1 and (b) PVQD-2 in toluene (1.0 × 10<sup>-3</sup> M) upon excitation at 365 nm at room temperature.

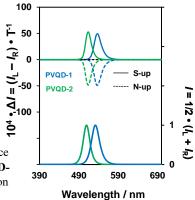



Fig. 2 MCPL(upper) and PL (lower) spectra of PVQD-1 (blue) and PVQD-2 (green) in toluene (1.0×10<sup>-3</sup> M).

に対しても固体状態において外部磁場を印加することにより MCPL の発現に成功している。2)

本研究ではアキラルなペロブスカイト量子ドット、

 $CH_5N_2PbBr_3$  (**PQVD-1**)および  $CsPbBr_3$  (**PQVD-2**)を用いて、toluene 溶液中 $(1.0\times10^{-3}\,\mathrm{M})$ 、外部磁場を印加することにより、MCPL 特性の発現について検討した。その結果、アキラルなペロブスカイト量子ドット **POVD-1** および

について検討した。その結果、アキラルなペロブスカイト量子ドット PQVD-1 および PQVD-2 において、極大 MCPL 波長( $\lambda_{\text{MCPL}}$ )537 および 514 nm、磁気異方性因子 ( $|g_{\text{MCPL}}|$ )5.6×10<sup>-3</sup> および 5.2×10<sup>-3</sup> の明確な MCPL スペクトルの観測に成功した(Figs . 1 and 2)。

- 1) Chem Lett., 2021, 50, 1131-1141.
- 2) Chem Lett., 2021, 50, 916-919.