蛍光ソルバトクロミック色素を組み込んだ脂質膜センサーの開発

(北大院環¹・北大院地環²) ○岩本 祐希¹・山田 幸司² Lipid Membranes Sensing Device with Fluorescent Solvatochromic Dyes Embedded into Vesicles (¹Graduate School of Environmental Science, Hokkaido University, ²Faculty of Environmental Earth Science, Hokkaido University) ○Yuki Iwamoto¹, Koji Yamada²

We designed and synthesized amphiphilic fluorescent solvatochromic dye for application to vesicles ¹⁾. In this study, we focused on application of the dye to lipid membranes. The target dye **2** was efficiently synthesized using Suzuki-Miyaura cross-coupling reactions (Fig. 1). Then, the optical properties of **1**¹⁾ and **2** containing amino group introduced to the nitrogen aromatic ring in various organic solvents are listed (Table 1). This tables indicates the property of solvatochromism of **2** is very similar to that of **1**. Furthermore, we also achieved the measurements of fluorescent signal changes of the vesicle suspension with time after 10 mM glutathione (reduced) was added (Fig. 2). We believe that this dye-embedded vesicles have potential for the application to model for evaluation of drug release properties of carriers.

Keywords : Fluorescent Dye; Solvatochromism ; Vesicles; Glutathion; Drug Delivery

本研究では、脂質膜センサーに最適な蛍光プローブを創製するために、1¹⁾の親水 部にアミノ基を導入した2を合成した(Fig. 1)。極性の異なる溶媒中における1と2 の光物性値を Table 1 に示す。これより、2 も蛍光ソルバトクロミック色素であるこ とが示された。さらに、1 および2を導入した各ベシクルの蛍光観察画像の比較から、 2 の方がベシクルの親水/疎水性の境界領域をより明確に区別することを確認した。 さらに、還元型グルタチオン 10 mM 添加後の色素含有ベシクルの蛍光波長と蛍光強 度の変化に時間依存性を確認した(Fig. 2)。この結果より、還元型グルタチオンがベ シクル膜の配向に歪みを生じさせ、ベシクル内部の色素を漏出させる可能性が示唆さ れた。したがって、本研究の色素含有ベシクルは、薬物包含キャリアの薬物徐放性の

評価モデルとしての利用を期待できる。詳細に ついてはポスターにて発表する。

	_		1			2	
Solvents	E _T (30) ¹	λ_{abs}^2	λ_{em}^{3}	Stokes shift	λ_{abs}^2	λ_{em}^{3}	Stokes shift
	(kcal mol-1)	(nm)	(nm)	103 (cm-1)	(nm)	(nm)	$10^{3} (\text{cm}^{-1})$
Toluene	33.9	391	457	3.7	380	446	3.9
Ethyl acetate	38.1	388	484	5.1	379	487	5.9
DMF ⁴	43.2	398	516	5.7	383	494	5.9
1 solvent pol	arity parameter.	² absorp	tion maxin	um. ³ emission	maximum.	⁴ N,N-din	nethylformamid

1) S. Son et al., Chem. Lett. 2011, 40, 998-991.

