Theoretical Study of Copper-Catalyzed Atom Transfer Radical Addition Reactions

(Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology) OMegumi Kayanuma Keywords: density functional theory, catalysis, photoredox reaction, copper complex

Photoredox catalysts using copper complexes are recently applied for various reactions, such as atom transfer radical addition (ATRA) reactions. The copper-based photocatalysts provide interesting reactivity, for example, $[Cu(dap)_2]Cl$ (dap = 2,9-di(*p*-anisyl)-1,10-phenanthroline) catalyzes ATRA reactions between perfluoroalkyl iodides and styrenes under visible light irradiation, which are not promoted by commonly employed photocatalysts using ruthenium or iridium complexes.¹ It is proposed that these reactions proceed not only by conventional outer-sphere photoredox mechanisms but also by inner-sphere mechanisms.²

In the present study, the mechanism of the visible-light-mediated ATRA reaction of CF₃I with styrene utilizing [Cu(dap)₂]Cl is analyzed by means of density functional theory (DFT) using the M06 functional with the D3 version of Grimm's dispersion correction. Stuttgart/Dresden ECP (SDD) is used for Cu and I atoms, and Dunning/Huzinaga full double- ζ basis sets with polarization functions (D95(d,p)) for the others. The solvent effect of acetonitrile is considered with the polarizable continuum model.

The photoexcited Cu(I) complex reduces CF₃I and generates CF₃ radical (*[Cu(dap)₂]⁺ + CF₃I \rightarrow [Cu(dap)₂]²⁺ + CF₃· + I⁻). The generated Cu(II) complex was suggested to undergo ligand exchange ([Cu(dap)₂]²⁺ + Cl⁻ + I⁻ \rightarrow [Cu(dap)(Cl)(I)] + dap),¹ which is confirmed by the present calculation. When CF₃ radical binds to styrene, benzyl radical is formed (CF₃· + C₈H₈ \rightarrow C₉H₈F₃·). It is shown that the C₉H₈F₃ radical does not initiate radical chain process (C₉H₈F₃· + CF₃I \rightarrow C₉H₈F₃I + CF₃·), which is a common mechanism of the ATRA reactions. For the reaction of C₉H₈F₃ radical to generate the product, C₉H₈F₃I ((3,3,3-trifluoro-1-iodopropyl)benzene), two mechanisms were proposed: rebound cycle in which the C₉H₈F₃ radical coordinates to Cu ([Cu(dap)(Cl)(I)] + C₉H₈F₃··→ [Cu(dap)(I)(C₉H₈F₃)]⁺ + Cl⁻ \rightarrow [Cu(dap)(Cl)] + C₉H₈F₃I) and ligand transfer cycle in which the C₉H₈F₃ radical abstracts the iodide atom from [Cu(dap)(Cl)(I)] ([Cu(dap)(Cl)(I)] + C₉H₈F₃··→ [Cu(dap)(Cl)] + C₉H₈F₃I].¹ The calculations show that ligand transfer cycle is more plausible.

1) T. Rawner, E. Lutsker, C.A. Kaiser, O. Reiser, *ACS Catal.* **2018**, *8*, 3950. 2) T. P. Nicholls, A.C. Bissember, *Tetrahedron Lett.* **2019**, *60*, 150883.