MCP-1 結合 D 体モノボディの化学合成と機能評価

(名大院工¹・京薬創薬化学²・名古屋大学未来社会創造機構ナノライフシステム研究 所³)

○内藤 俊紀¹・三浦 清楓¹・大石 真也²・林 剛介¹・村上 裕^{1,3}

Chemical Synthesis and Evaluation of D-monobody Binding to MCP-1 Protein

(¹Graduate School of Engineering, Nagoya University, ²Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, ³Institute of Nano-Life-Systems, Innovation for Future Society, Nagoya University)

○Toshinori Naito,¹ Sayaka Miura,¹ Shinya Oishi,² Gosuke Hayashi,¹ Hiroshi Murakami¹,³

D-proteins composed of D-amino acids are known to have higher protease resistance and lower immunogenicity than natural L-proteins. Therefore, D-protein antibodies that selectively bind to target molecules with high affinity are expected to become new drug candidates. In this study, we aimed to establish a technology for developing *D*-monobody (one of antibody-like proteins) by combining "TRAP display", 1) an engineered mRNA display methods for obtaining antibody-like proteins, and the "chemical protein synthesis", that can produce proteins via solid-phase peptide synthesis and peptide ligation. First, monobody clones binding to the enantiomer of natural MCP-1, which plays an important role in chronic inflammation, were obtained. Then we attempted to chemically synthesize one of the obtained clone sequences consisting of 108 amino acids by using D-amino acids. Finally, the full-length D-monobody was obtained from four peptide segments by ligating these segments with Native Chemical Ligation.²⁾

Keywords: Chemical Protein Synthesis; Native Chemical Ligation; In Vitro Selection; Artificial Antibody

D体アミノ酸からなる D体タンパク質は、天然タンパク質に比べてプロテアーゼ耐 性が高く、免疫原性が低いことが知られている。そのため、標的分子に選択的かつ高 親和性で結合するD体タンパク質抗体は、新たな医薬品候補分子として期待されてい る。本研究では、人工抗体を取得する進化分子工学的手法「TRAP ディスプレイ法」 1)と有機化学的にタンパク質を作製する手法「タンパク質化学合成法」を組み合わせ ることで、D体モノボディ(人工抗体の一種)取得技術の確立を目指した。まず、慢 性炎症などに関わる MCP-1 の鏡像異性体に結合するモノボディクローンを取得し、 その後、108 アミノ酸からなるモノボディ配列を D体アミノ酸を用いて合成した。具 体的には、4つのペプチド断片に分割し、各ペプチドを NCL (Native Chemical Ligation) ²⁾により連結することで、全長 D 体モノボディを合成した。

¹⁾ T. Kondo, et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci. Adv., 2020, 6, eabd3916.

²⁾ P.E. Dawson, et al. Synthesis of Proteins by Native Chemical Ligation. Science, 1994, 266, 5186.