
Cu^{II}-dependent regulation of a split-DNAzyme having consecutive ethenoadenine nucleobases as metal recognition sites

(¹*Graduate School of Science, The University of Tokyo*) OSilpa Chandran Rajasree,¹ Yusuke Takezawa,¹ Mitsuhiko Shionoya¹

Keywords: DNAzyme, Metal-mediated base pairs, Damaged nucleobase, Metal complex, DNA nanotechnology

Metal-mediated base pairs consisting of opposing ligand-type nucleobases and a bridging metal ion are often applied towards the development of stimuli-responsive DNA architectures. Previously we have developed a Cu^{II} -dependent allosteric DNAzyme by incorporating artificial ligand-type nucleobases such as hydroxypyridone (**H**).^[1] However, the cumbersome synthesis and low yields associated with artificial nucleosides make the development of metal-responsive DNA systems especially challenging.

In this study, we employed an easily synthesized damaged nucleobase, $1,N^{6}$ ethenoadenine (ϵA), as a ligand-type nucleobase for the development of a metal-responsive DNAzyme. It was reported that the formation of a single ϵA -Cu^{II}- ϵA base pair stabilizes the DNA duplex ($\Delta T_m = +3 \ ^{\circ}C$),^[2] but such a low stabilization effect is insufficient for the metalmediated regulation of DNA structures. We found that incorporation of three consecutive ϵA -Cu^{II}- ϵA base pairs into DNA duplexes allows for Cu^{II}-dependent significant duplex stabilization ($\Delta T_m = +11.5 \ ^{\circ}C$). Motivated by this result, we modified a reported RNA-cleaving DNAzyme (NaA43)^[3] by splitting it into two strands and incorporating three ϵA - ϵA mismatch pairs into the stem duplex (Figure). In the absence of Cu^{II} ions, the activity of the ϵA -modified DNAzyme was significantly suppressed. Upon addition of Cu^{II} ions (3 equiv.), the RNAcleaving activity was enhanced by 5.3-fold. The activity of neither the unmodified NaA43 DNAzyme nor a control DNAzyme having A-A mismatches was altered by adding Cu^{II} ions. These results indicate that the split ϵA -DNAzyme can hybridize via ϵA -Cu^{II}- ϵA base pairing to reconstruct the catalytic core, thereby enhancing the activity in response to Cu^{II} ions.^[4]

Figure. Schematic illustration of a Cu^{II}-dependent split DNAzyme regulated by the formation of consecutive ϵA -Cu^{II}- ϵA base pairs.

[1] T. Nakama, Y. Takezawa, D. Sasaki, M. Shionoya, J. Am. Chem. Soc., 2020, 142, 10153. [2] S. Mandal, C. Wang, R. K. Prajapati, J. Kösters, S. Verma, L. Chi, J. Müller, Inorg. Chem., 2016, 55, 7041. [3] S.-F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 5903. [4] S. C. Rajasree, Y. Takezawa, M. Shionoya, Chem. Commun., 2023, in press, DOI: 10.1039/d2cc06179a.