Characterization of electronic structures of ligand-protected superatoms and superatomic molecules by gas-phase photoelectron spectroscopy

(¹*Graduate School of Science, The University of Tokyo*) ○ Shun Ito¹, Emi Ito¹, Shinjiro Takano¹, Kiichirou Koyasu¹, Tatsuya Tsukuda¹

Keywords: Gold cluster, Thiolate-protected, Gas-phase spectroscopy, Supervalence bond

Gold/silver clusters protected by organic ligands have been gathering much interest as next-generation functional nanomaterials.¹ Extraordinary stabilities of $[Au_{25}(PET)_{18}]^{-}$ (PET = 2-PhC₂H₄S) with an icosahedral Au₁₃ core and its derivatives have been well explained by the electronic shell closure of superatomic orbitals.² Superatom concept was extended to supervalence bond (SVB) model to rationalize an anisotropic bi-icosahedral Au₂₃ core of Au₃₈(PET)₂₄.³ To probe the superatomic orbitals directly, we have developed and conducted gas-phase photoelectron spectroscopy (PES) on mass-selected beam of [Au₂₅(PET)₁₈], $[MAg_{24}(DMBT)_{18}]^{-}$ (M = Ag, Au, Pd⁻, Pt⁻, DMBT = 2,4-Me₂C₆H₃S),⁴ and $[MAu_{37}(PET)_{24}]^{-}$ $(M = Pd, Pt)^5$ by using a home-built apparatus (Figure 1a) equipped with an electrospray ionization (ESI) source, a quadrupole linear ion trap, a time-of-flight mass spectrometer, and a magnetic-bottle type photoelectron spectrometer. PES on $[Au_{25}(PET)_{18}]^{-1}$ and $[MAg_{24}(DMBT)_{18}]^{-}$ (M = Ag, Au, Pd⁻, Pt⁻) revealed that doping of Pd/Pt upshifted the energy levels of 1P superatomic orbitals while the effect of Au/Ag exchange was small (Figure 1b).⁴ PES on $[MAu_{37}(PET)_{24}]^-$ (M = Pd, Pt) exhibited two distinct peaks, which is in accordance with the SVB model theoretically predicted (Figure 1c).⁵

Figure 1. (a) Schematic view of an apparatus. PE spectra of (b) $[Au_{25}(PET)_{18}]^-$, $[PdAg_{24}(DMBT)_{18}]^-$, and $[PtAg_{24}(DMBT)_{18}]^-$ and (c) $[MAu_{37}(PET)_{24}]^-$ (M = Pd, Pt).

1) S. Takano et al. J. Am. Chem. Soc. **2021**, *143*, 1683. 2) M. Walter et al. Proc. Natl. Acad. Sci. U. S. A. **2008**, *105*, 9157. 3) Cheng, L. et al. Nanoscale **2013**, *5*, 1475. 4) S. Ito et al. J. Phys. Chem. Lett. **2022**, *13*, 5049. 5) E. Ito et al. JACS Au, **2022**, *2*, 2627.