K203-4am-10

Thermoelectric Measurements of Self-Assembled Monolayer of Multinuclear Ruthenium Alkynyl Complexes

(¹ Lab. Chem. Life Sci., Tokyo Tech., ² Dept. Chem., Korea Univ.) OYuya Tanaka,¹ Sohyun Park,² Jiung Jang,² Hyo Jae Yoon.²

Keywords: Thermoelectric property; Seebeck coefficient; Ruthenium alkynyl complex; Self-assembled monolayer; EGa-In

Molecules with high Seebeck coefficients (S) have potential applications in thermoelectric materials. However, their S values at single-molecule and self-assembled monolayer levels are low partly due to large energy gaps $(E-E_F)$ between molecular frontier orbital energy and Fermi energy of the electrodes. We have recently reported highly conducting organometallic molecules with electron-rich ruthenium tetraphosphine fragments in molecular junction.¹ The theoretical study suggests that their small energy gaps $(E-E_F)$, which may lead to a large Seebeck coefficient. In this study, we report the Seebeck coefficient of multinuclear ruthenium complexes bridged by *p*-diethynylbenzene-diyl linkers and examine their thermoelectric properties.²

Thermoelectric measurements for mono-, di- and tri-ruthenium complexes $1^{R}-3^{R}$ (R = H, CF₃, OMe) were conducted using the Au-molecule-EGaIn/Ga₂O₃ system.³ Upon heating the gold electrode, the *S* values increased with the number of metal fragments, and the trinuclear complex showed a value exceeding 70 μ V/K, which is the highest *S* value obtained by SAM junction reported so far. Theoretical calculations and cyclic voltammograms indicate that the high Seebeck coefficient is caused by the high-lying HOMO, which destabilizes as the number of metal fragments increases. We also examined substituents effect for the dinuclear complexes (2^{R}).

1) M. Akita, Y. Tanaka, *Coord. Chem. Rev.* **2022**, *461*, 214501. 2) S. Park, J. Jang, Y. Tanaka, H. J. Yoon, *Nano Lett.* **2022**, *22*, 9693. 3) Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. *Nano Lett.* **2010**, *10*, 3611.