Synthesis of metal-substituted lambda-Ti₃O₅ by arc melting method

(¹The Univ. of Tokyo) \bigcirc Kotaro Kawakami,¹ Marie Yoshikiyo,¹ Fangda Jia,¹ Shin-ichi Ohkoshi¹

Keywords: heat-storage; phase transition; arc melting; titanium oxide

The trititanium pentoxide (Ti₃O₅) has a stable β -phase and a meta-stable λ -phase at room temperature.¹ λ -Ti₃O₅ (Fig. 1a) was first discovered in our group in 2010. External stimulations, such as pressure, induce the λ -phase to turn into the β -phase.² When high-pressure induces the λ -phase to β -phase, heat-release occurs. Also, heating induces the β -phase to return to the λ -phase by heat absorption. Thus, the present material is vigorously studied as heatstorage material.² Nanometer-size effect is the key to stabilize Ti₃O₅ as the λ -phase.³ Several synthesis methods for λ -Ti₃O₅, as well as λ -Ti₃O₅ with metal doping, have been reported in recent years.⁴⁻⁷ In 2020, we reported synthesis of metal-doped λ -Ti₃O₅ by arc melting method.⁴

In the present work, we synthesized Al-doped λ -Ti₃O₅ with the arc melting method. Firstly, Ti powder, rutile TiO₂ powder, and Al₂O₃ powder are mixed. Secondly, the mixture of the powder is pressed to form a bulk. Finally, the pellet is put in a low-pressure Ar atmosphere on a cupper stage, where the arc current is applied to heat the pellet. The obtained sample was a hemisphere with a radius of ca. 5 mm(Fig. 1b). From the X-ray fluorescent spectroscopy(XRF) measurement, the substitution ratio was determined to be [A1]/([Ti] + [A1]) = 2.84 %. The sample was ground into powder, and scanning electron microscopy(SEM) and X-ray diffractometer(XRD) measurements were conducted. The SEM image is in Fig. 1c. From the Rietveld analysis of the XRD pattern, the obtained sample was composed of 91.5 % λ -phase and 8.5 % β -phase(Fig. 1d). We succeeded in synthesizing Al-doped λ -Ti₃O₅ with arc melting method.

Figure 1. (a) Crystal structure of λ -Ti₃O₅. (b) Photograph, (c) SEM image, and (d) XRD pattern with Rietveld analysis of Al-doped λ -Ti₃O₅. The values represent the lattice plane index of λ -Ti₃O₅.

[1] S. Ohkoshi, et al., Nat. Chem. 2 (7), 539-545 (2010). [2] H. Tokoro, et al., Nat. Commun. 6, 7037 (2015). [3] R. Makiura, et al., Chem. Asian J. 6 (7) 1886-1890 (2011). [4] Y. Nakamura, et al., Sci. Adv. 6 (27) (2020). [5] Z. Shen, et al., Appl. Phys. Lett. 111 (19), 191902 (2017). [6] M. Wang, et al., J. Alloy. Compd. 774, 1189-1194 (2019). [7] S. Ohkoshi, et al., Mater. Adv., 3 (12) 4824-4830 (2022).