Crystal structure and physical properties of a new organic conductor κ"-(ET)₂Cu[N(CN)₂]Br

(Graduate School of Science, Kyoto University) O Soichiro Yasaka, Mitsuhiko Maesato, Yukihiro Yoshida, Hiroshi Kitagawa

Keywords: Organic conductor; BEDT-TTF (ET); Crystal structure; Conductivity

The organic conductors κ -(ET)₂X have attracted much attention because of their striking physical properties such as superconductivity and quantum spin liquid, where ET denotes bis(ethylenedithio)-tetrathiafulvalene.

Among them, κ -(ET)₂Cu[N(CN)₂]Br (κ -Br) is an ambient-pressure superconductor with a relatively high critical temperature $T_c = 11.6$ K in close proximity to a Mott insulating state[1], whereas the isostructural κ -(ET)₂Cu[N(CN)₂]Cl (κ -Cl) is an antiferromagnet and shows a pressure-induced superconductivity at 12.8 K under a moderate pressure of 0.3 kbar[2]. It has been considered that the electron correlation is a key factor dominating the ground states of κ -(ET)₂X [3].

Recently, we found a new polymorph of κ -Br, κ "-(ET)₂Cu[N(CN)₂]Br (κ "-Br), which was obtained as a by-product of κ -Br. The κ "-Br salt has a monoclinic crystal structure composed of conducting ET layers and insulating anion layers alternating along *a* axis (Fig. 1). The molecular long axis of ET is nearly collinear in the monoclinic κ "-Br, while there are alternating two kinds of ET layers with different orientations in the orthorhombic κ -Br. The κ -type arrangement of ET molecules in κ "-Br is similar to that of κ -Br. In the polymeric zig-zag chains of anions, the dicyanamide groups are disordered in κ "-Br, while they are ordered in κ -Br.

We also report the band structure and physical properties of k"-Br and discuss its electronic states.

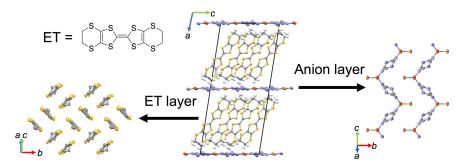


Fig. 1. Crystal structure of ĸ"-(ET)₂Cu[N(CN)₂]Br

1) A. M. Kini et al., Inorg, Chem., **1990**, 29, 2555-2557. 2) Jack M. Williams et al., Inorg, Chem. **1990**, 29, 3272-3274. 3) K. Kanoda, J. Phys. Soc. Jpn. **2006**, 75, 051007.