
Towards molecular multiferroics by supramolecular rotor and ferromagnetic [MnCr(oxalate)₃]⁻ salts

(¹ Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan, ² Graduate School of Environmental Science, Hokkaido University, Sapporo, 001-0021, Japan)
© Rui-Kang Huang, ^{1,2} Jiabing Wu¹, Kiyonori Takahashi, ^{1,2} Takayoshi Nakamura ^{1,2} **Keywords**: multiferroics, molecular crystals, oxalate coordinates, supramolecular rotor

Multiferroics is one of the most focusing kinds in multi-functional materials due to its wide applications in sensors, actuators, memories, etc.^[1] Recently, we are focusing on introducing ferroelectric supramolecular rotors into the ferromagnetic oxalate coordinates to achieve multiferroics in molecular materials.^[2] We obtain two candidates for molecular multiferroelectrics: [(*o*-fluoroanilinium)(benzo-18-crown-6)][MnCr(oxalate)₃] (1, *o*FAni = *o*-fluoroanilinium, Bz18C6 = benzo-18-crown-6) and [(HADA)(18C6)][MnCr(oxalate)₃] (2, HADA = 3-hydroxy-1-adamantylammonium, 18C6 = 18-crown-6).

Both 1 and 2 display similar ferromagnetic properties compare to the previous result. [2] 1 undergoes a polar-nonpolar phase transition from Cc to $P2_1/c$ at around 450 K (**Figure a**). At 223 K, oFAni is aligned and Bz18C6 is anti-aligned while both of oFAni and Bz18C6 are disordered thanks to their in-plane rotation at 460 K. 1 displays a step-like dielectric anomaly during phase transition (**Figure b**). The ferroelectricity of 1 is confirmed by its reversible direction of pyroelectric current under reversed applied electric field.

2 undergoes a polar-nonpolar phase transition from $Pna2_1$ to Cmcm due to order-4-fold-disorder transition of $(HADA)(18C6)^+$ as shown in **Figure d**. During phase transition, 2 displays a dielectric relaxation in a board range from 120 K to 270 K (**Figure e**). The relaxation of real part is similar to relaxor ferroelectrics. And E_a of this relaxation is calculated by imagery part $(37.5 \text{ kJ mol}^{-1})$, which is comparable to the E_a of hydrogen bond.

- [1] Fiebig, M. et al, Nature Reviews Materials 1, 8 (2016).
- [2] Endo T. et al., Dalton Transactions 1491, 40 (2011).