(2,2'-Oxybis(ethylaminium))(benzo[18]crown-6)₂[Ni(dmit)₂]₂結晶にお ける分子運動と連動した熱膨張変化

(北大院環境¹・北大電子研²) 〇羽田 将人¹・黄 瑞康^{1,2}・薛 晨^{1,2}・高橋 仁徳^{1,2}・ 中村 貴義^{1,2}

Thermal expansion change coupled with molecular motion in $(2,2'-Oxybis(ethylaminium))(benzo[18]crown-6)[Ni(dmit)_2] crystal (¹Graduate School of Environmental Science, Hokkaido Univ., ²RIES, Hokkaido Univ.) OMasato Haneda¹, Kiyonori Takahashi^{1,2}, Naohiro Hasuo^{1,2}, Ruikang Huang^{1,2}, Chen Xue^{1,2}, Takayoshi Nakamura^{1,2}$

Thermal expansion differences between materials in composite materials/devices cause operation defects. In this study, we have prepared ((${}^{+}H_3N-C_2H_5)_2O$)(B18C6)₂([Ni(dmit)₂]⁻)₂) (1), where (${}^{+}H_3N-C_2H_5)_2O$ and B18C6 are 2,2'-oxybis(ethylaminium⁺) and benzo[18]crown-6, respectively, and evaluated its thermal expansion. The supramolecular cations formed one-dimensional (1D) chains and 1D chain formed the two-dimensional layer in the plane parallel to the *ac* plane. Below 253 K, crystal 1 exhibits a small negative thermal expansion ($-4 \times 10^{-6} \text{ K}^{-1}$) while above 273 K, it shows a negative thermal expansion ($-37 \times 10^{-6} \text{ K}^{-1}$) in the X_1 direction of the principal axis. Above 273 K, two different orientations of (${}^{+}H_3N-C_2H_5$)₂O occur and the C-H••• π interaction between B18C6 disappears. Details of thermal expansion and magnetism associated with structural changes will be reported. *Keywords : Thermal Expansion, Supramolecular Cation, Molecular motion in a crystal*

複合材料・デバイスにおいて材料間の熱膨張差が、 動作不良を引き起こす原因となる。特に、分子性 材料を含む材料・デバイスの場合、基材との熱膨 張差は顕著である。我々は超分子を用いた分子性 結晶の熱膨張制御手法を開拓している。本研究で は、2,2'-oxybis(ethylaminium⁺) ((⁺H₃N-C₂H₅)₂O)と benzo[18]crown-6 (B18C6) からなる超分子カチ オンを含む((⁺H₃N-C₂H₅)₂O)(B18C6)₂([Ni(dmit)₂]⁻)₂

Figure 1. Supramolecular structure of 1.

(1) を作製し、結晶構造解析に基づき熱膨張を評価した。93 K における超分子カチオンの配列を Figure 1 に示す。(⁺H₃N-C₂H₅)₂O と B18C6 が 1:2 の組成比で超分子カチオンを形成した。超分子カチオンは *c* 軸方向に隣接する超分子カチオンと B18C6 間での C-H•••O 相互作用により、1 次元 (1D)鎖を形成した。さらに *a* 軸方向に隣接する超分子カチオンの 1D 鎖間で C-H•••π 相互作用し、超分子カチオンは 2 次元層を形成した。253 K 以下では、principal axis の X_1 方向に金属並みに絶対値の小さい熱膨張 (-4×10^{-6} K⁻¹)を示す一方、273 K 以上では X_1 方向に負の熱膨張 (-37×10^{-6} K⁻¹)を示した。273 K 以上では(⁺H₃N-C₂H₅)₂O に 2 種類の配向が生じ、B18C6 間の CH•••π 相互作用が消失していた。当日は構造変化の詳細と磁気的性質について報告する。