Mobility of proton conduction in thin films using the electric field effect

(¹School of Materials Science, Japan Advanced Institute of Science and Technology, ²Faculty of Science, Yamagata University) OYuki Nagao,¹ Athchaya Suwansoontorn,¹ Kentaro Aoki,¹ Jun Matsui,²

Keywords: Proton Mobility; Polyelectrolyte; Ion Conductor; Conductivity Switching; Proton

The proton (H⁺) transport properties of weak-acid polymer thin film, such as H⁺ transport mobility (μ_{H^+}) and mobile H⁺ concentration (n'_{H^+}), were revealed through a protonic fieldeffect transistor (H⁺-FET) with electrochemical impedance spectroscopy (EIS) measurement for the first time. H⁺-FET is a promising device for H⁺ conductive materials investigation since it can control H⁺ charge carrier flow by applying external gate voltage (V_g). ¹⁻³ The H⁺ charge carrier provided by the Pd electrode reaction with a DC measurement system is essential in the reported H⁺-FETs.^{1,2} However, we suspect that the excess H⁺ carrier Pd electrode reaction and strong contact resistance effect might interfere with the material's properties investigation. Therefore, the H⁺-FET with the gold (Au) electrode coupling with EIS measurement under an air atmosphere was established to overcome the electrode reaction and contact resistance effects.

Our H⁺-FET device, named Au-CFET, consists of comb-shaped Au electrodes deposited on Si/SiO₂ substrate. Polyacrylic acid (PAA) thin film (45 nm) was spin-coated on Au-CFET and was investigated as H⁺ conductive material.

The measurement was performed by individually applying V_g from -5 V to +5 V. We observed the V_g dependence of in-plane H⁺ conductivity (σ), which increased when stronger negative V_g was applied (Fig. 1 (a)). The μ_{H^+} of 8×10^{-4} cm² V⁻¹ s⁻¹ was successfully estimated from the slope of the σ - V_g curve (-5 V to -3.5V). As shown in Fig. 1 (b), we also discovered the influence of V_g on n'_{H^+} and the effective pK_a (pK_a ') of PAA thin film. Moreover, the V_g dependent of the film Debye length (κ ⁻¹) would be further investigated.

C. Zhong, Y. Deng, A. F. Roudsari, A. Kapetanovic,
M. P. Anantram, M. Rolandi, *Nat. Commun.* 2011, *2*, 476. 2) H. Zhong, G. Wu, Z. Fu, H, Lv, Xu. G, R. Wang, *Adv. Mater.* 2020, *32*, 2000730. 3) S. Mondal, Y. Agam,
N. Amdursky, *Small* 2020, *16*, 2005526.

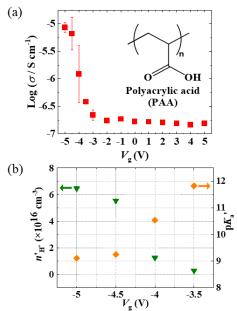


Figure 1 The applied $V_{\rm g}$ dependence of PAA thin film's (a) σ , and (b) $n'_{\rm H+}$ and $pK_{\rm a}'$.